roast / main.py
nateraw's picture
Update main.py
b861d01
raw
history blame
7.56 kB
import logging
import os
import re
import time
import traceback
from threading import Thread
import openai
import pandas as pd
import requests
import tweepy
from huggingface_hub import upload_file
logger = logging.getLogger()
logging.basicConfig(level=logging.INFO)
logger.setLevel(logging.INFO)
bot_user_id = 1612106815096999936
bot_user_name = "RoastOrToastGPT"
persistent_storage_repo_id = "team6/roast-history"
persistent_storage_file_name = "history.csv"
persistent_storage_file_url = (
f"https://huggingface.co/datasets/{persistent_storage_repo_id}/resolve/main/{persistent_storage_file_name}"
)
# will be used to remove the @roastortoastgpt from the tweet text (case insensitive)
pattern_at_mention = re.compile(re.escape("@roastortoastgpt"), re.IGNORECASE)
print(persistent_storage_file_url)
openai_key = os.environ.get("openai_api_key")
consumer_key = os.environ.get("consumer_key")
consumer_secret_key = os.environ.get("consumer_secret_key")
access_token = os.environ.get("access_token")
access_token_secret = os.environ.get("access_token_secret")
bearer_token = os.environ.get("bearer_token")
hf_token = os.environ.get("hf_token")
client = tweepy.Client(
bearer_token=bearer_token,
consumer_key=consumer_key,
consumer_secret=consumer_secret_key,
access_token=access_token,
access_token_secret=access_token_secret,
wait_on_rate_limit=True,
)
def response(text):
openai.api_key = openai_key
response = openai.Completion.create(
engine="text-davinci-002",
prompt=text,
temperature=0.9,
max_tokens=60,
top_p=1,
frequency_penalty=0,
presence_penalty=1.0,
)
return response.choices[0].text.strip()
def roast(text):
return response(
f"Humorously mock, humiliate and hurt the user's feelings with a well-timed joke, diss or comeback based on the info.\n\nInfo: {text}\n\nResponse:"
)
def toast(text):
return response(
f"Give the user a genuine and unique compliment to make them feel good about themselves based on the info in a good style manner.\n\nInfo: {text}\n\nResponse:"
)
def reply_to_mentions():
df = pd.read_csv(persistent_storage_file_url)
last_tweet_id = df.iloc[-1]["id"]
# List of unique conversation ids that we've already responded to.
# This is to prevent us from responding to the same conversation twice.
all_convo_ids = df["conversation_id"].unique().tolist()
# get the mentions. These are both direct mentions and replies to our tweets
mentions = client.get_users_mentions(
id=bot_user_id,
expansions=["author_id", "in_reply_to_user_id", "referenced_tweets.id"],
tweet_fields=["conversation_id"],
since_id=last_tweet_id,
)
# if there are no new mentions, return
if mentions.data is None:
# log it
logger.info("No new mentions found")
return
data_to_add = {"id": [], "conversation_id": []}
# otherwise, iterate through the mentions and respond to them
# we iterate through the mentions in reverse order so that we respond to the oldest mentions first
for mention in reversed(mentions.data):
if mention.author_id == bot_user_id:
# don't respond to our own tweets
logger.info(f"Skipping {mention.id} as it is from the bot")
continue
if mention.in_reply_to_user_id == bot_user_id:
# don't respond to our own tweets
logger.info(f"Skipping {mention.id} as the tweet to roast is from the bot")
continue
if not mention.referenced_tweets:
logger.info(f"Skipping {mention.id} as it is not a reply")
continue
# if we've already responded to this conversation, skip it
# also should catch the case where we've already responded to this tweet (though that shouldn't happen)
if mention.conversation_id in all_convo_ids:
logger.info(f"Skipping {mention.id} as we've already responded to this conversation")
continue
logger.info(f"Responding to {mention.id}, which said {mention.text}")
tweet_to_roast_id = mention.referenced_tweets[0].id
tweet_to_roast = client.get_tweet(tweet_to_roast_id)
text_to_roast = tweet_to_roast.data.text
mention_text = mention.text
mention_text = pattern_at_mention.sub("", mention_text)
logger.info(f"Mention Text: {mention_text}")
if "roast" in mention_text.lower():
logger.info(f"Roasting {mention.id}")
text_out = roast(text_to_roast)
elif "toast" in mention_text.lower():
logger.info(f"Toasting {mention.id}")
text_out = toast(text_to_roast)
else:
logger.info(f"Skipping {mention.id} as it is not a roast or toast")
continue
# Quote tweet the tweet to roast
logger.info(f"Quote tweeting {tweet_to_roast_id} with response: {text_out}")
quote_tweet_response = client.create_tweet(
text=text_out,
quote_tweet_id=tweet_to_roast_id,
)
print("QUOTE TWEET RESPONSE", quote_tweet_response.data)
response_quote_tweet_id = quote_tweet_response.data.get("id")
logger.info(f"Response Quote Tweet ID: {response_quote_tweet_id}")
response_quote_tweet_url = f"https://twitter.com/{bot_user_name}/status/{response_quote_tweet_id}"
logger.info(f"Response Quote Tweet URL: {response_quote_tweet_url}")
# reply to the mention with the link to the response tweet
logger.info(f"Responding to: {mention.id}")
response_reply = client.create_tweet(
text=f"Here's my response: {response_quote_tweet_url}",
in_reply_to_tweet_id=mention.id,
)
response_reply_id = response_reply.data.get("id")
logger.info(f"Response Reply ID: {response_reply_id}")
# add the mention to the history
data_to_add["id"].append(mention.id)
data_to_add["conversation_id"].append(mention.conversation_id)
# add a line break to the log
logger.info("-" * 100)
# update the history df and upload it to the persistent storage repo
if len(data_to_add["id"]) == 0:
logger.info("No new mentions to add to the history")
return
logger.info(f"Adding {len(data_to_add['id'])} new mentions to the history")
df_to_add = pd.DataFrame(data_to_add)
df = pd.concat([df, df_to_add], ignore_index=True)
df.to_csv(persistent_storage_file_name, index=False)
upload_file(
repo_id=persistent_storage_repo_id,
path_or_fileobj=persistent_storage_file_name,
path_in_repo=persistent_storage_file_name,
repo_type="dataset",
token=hf_token,
)
def main():
logger.info("Starting up...")
while True:
try:
# Dummy request to keep the Hugging Face Space awake
# Not really working as far as I can tell
# logger.info("Pinging Hugging Face Space...")
# requests.get("https://team6-roast.hf.space/", timeout=5)
logger.info("Replying to mentions...")
reply_to_mentions()
except Exception as e:
logger.error(e)
traceback.print_exc()
logger.info("Sleeping for 30 seconds...")
time.sleep(30)
with gr.Blocks() as demo:
gr.Markdown(Path('README.md').read_text())
thread = Thread(target=main, daemon=True)
if __name__ == "__main__":
thread.start()
demo.launch()