File size: 4,133 Bytes
5f3229a
bd0a1f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f3229a
bd0a1f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e9f976
 
bd0a1f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e9f976
bd0a1f8
6e9f976
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bd0a1f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1cd4e94
 
 
 
 
 
 
 
 
0680486
 
 
 
 
527a9fe
 
0680486
527a9fe
1cd4e94
6e9f976
0680486
 
6e9f976
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import streamlit as st
import numpy as np
import PIL
from PIL import Image
from streamlit_image_select import image_select
from ultralytics import YOLO
import cv2
import matplotlib.pyplot as plt
import os
import pathlib
import PIL
import PIL.Image
import xml.etree.ElementTree as ET
import pybboxes as pbx
from pybboxes import BoundingBox
from pathlib import Path
import colorsys
import random

####################################################
# Support functions
####################################################

# helper function to generate random colors for class boxes
def generate_label_colors(count):
  colors = []
  for c in range(count):
    h,s,l = random.random(), 0.5 + random.random()/2.0, 0.4 + random.random()/5.0
    r,g,b = [int(256*i) for i in colorsys.hls_to_rgb(h,l,s)]
    colors.append(tuple([int(r), int(g), int(b)]))
  return colors

# helper function to run model inference
def run_inference(model, img_paths):
  return model.predict(img_paths)

# helper function to process result and return image with bbox overlays
def process_inference_result(result, class_colors):

  # setup label counts
  label_counts = {'class': [], 'count': []}
  # extract result objects
  img = result.orig_img
  dh, dw, _ = img.shape
  boxes = result.boxes.xywhn.tolist()
  labels = [int(label) for label in result.boxes.cls]
  conf = [float(label) for label in result.boxes.conf]

  # create image
  for i, bbox in enumerate(boxes):
    x = bbox[0]
    y = bbox[1]
    w = bbox[2]
    h = bbox[3]
    voc_box = pbx.convert_bbox([x, y, w, h], from_type="yolo", to_type="voc", image_size=(dw, dh))
    voc_x1 = voc_box[0]
    voc_y1 = voc_box[1]
    voc_x2 = voc_box[2]
    voc_y2 = voc_box[3]
    class_name = aircraft_lookup[classes[labels[i]]]
    cv2.rectangle(img, (voc_x1, voc_y1), (voc_x2, voc_y2), class_colors[labels[i]], 2)
    cv2.putText(img, class_name  + ' ' + str(round(conf[i], 2)), (voc_x1, voc_y1-5), cv2.FONT_HERSHEY_SIMPLEX, 1, class_colors[labels[i]], 2)
    if class_name not in label_counts['class']:
        label_counts['class'].append(class_name)
        label_counts['count'].append(1)
    else:
        label_counts['count'][label_counts['class'].index(class_name)] += 1

  return img, label_counts

def get_detection_count_display(classes):
  if(len(classes)): 
    disp_str = "[Aircraft detected] "
    for class_name, count in enumerate(classes):
      disp_str += class_name + ": " + str(count) + "  " 
  else:
    disp_str = "[No aircraft detected]"
  return disp_str

def run_process_show(img_path):
  results = model(img_path)
  processed_image = process_inference_result(results[0], rand_class_colors)
  return processed_image

####################################################
# Setup model and class parameters
####################################################

# init model
model = YOLO("weights/best.pt")

# setup label classes
classes = ['A6', 'A17', 'A16', 'A15', 'A5', 'A20', 'A14', 'A12', 'A8', 'A2', 'A7', 'A18', 'A13', 'A4', 'A19', 'A1', 'A3', 'A10', 'A11', 'A9']

# setup mapping of class labels to real aircraft names
aircraft_names = ['SU-35', 'C-130', 'C-17', 'C-5', 'F-16', 'TU-160', 'E-3', 'B-52', 'P-3C', 'B-1B', 'E-8', 'TU-22', 'F-15', 'KC-135', 'F-22', 'FA-18', 'TU-95', 'KC-10', 'SU-34', 'SU-24']
aircraft_lookup = {}
for i in range(len(classes)):
    aircraft_lookup['A' + str(i+1)] = aircraft_names[i]

# generate bbox colors for each class
rand_class_colors = generate_label_colors(len(classes))


####################################################
# Main UX Loop
####################################################
img = image_select(
    label="Select an airbase",
    images=[
        cv2.imread("images/edwards.jpg"),
        cv2.imread("images/edwards2.jpg"),
    ],
    captions=["Edwards AFB1", "Edwards AFB2"],
)

# process image through detector
status = st.empty()

# show un-classified image
big_img = st.image(img)

# show status message
status.write("Running OneEye detector...")

# process image through detector
img2, detection_labels = run_process_show(img)
big_img.image(img2)

status.write(get_detection_count_display(detection_labels))