File size: 11,513 Bytes
4479cfa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
# -*- coding: utf-8 -*-
"""
@author:XuMing([email protected])
@description:
"""
import argparse
from threading import Thread
from typing import Union, List
import torch
from loguru import logger
from peft import PeftModel
from similarities import Similarity
from transformers import (
AutoModel,
AutoModelForCausalLM,
AutoTokenizer,
BloomForCausalLM,
BloomTokenizerFast,
LlamaTokenizer,
LlamaForCausalLM,
TextIteratorStreamer,
GenerationConfig,
)
MODEL_CLASSES = {
"bloom": (BloomForCausalLM, BloomTokenizerFast),
"chatglm": (AutoModel, AutoTokenizer),
"llama": (LlamaForCausalLM, LlamaTokenizer),
"baichuan": (AutoModelForCausalLM, AutoTokenizer),
"auto": (AutoModelForCausalLM, AutoTokenizer),
}
LLAMA_TEMPLATE = """[INST] <<SYS>>\nYou are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.
If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.\n<</SYS>>\n\n"""
PROMPT_TEMPLATE = """基于以下已知信息,简洁和专业的来回答用户的问题。
如果无法从中得到答案,请说 "根据已知信息无法回答该问题" 或 "没有提供足够的相关信息",不允许在答案中添加编造成分,答案请使用中文。
已知内容:
{context_str}
问题:
{query_str}
"""
class ChatPDF:
def __init__(
self,
sim_model_name_or_path: str = "shibing624/text2vec-base-chinese",
gen_model_type: str = "baichuan",
gen_model_name_or_path: str = "baichuan-inc/Baichuan-13B-Chat",
lora_model_name_or_path: str = None,
device: str = None,
int8: bool = False,
int4: bool = False,
):
default_device = torch.device('cpu')
if torch.cuda.is_available():
default_device = torch.device(0)
elif torch.backends.mps.is_available():
default_device = 'mps'
self.device = device or default_device
self.sim_model = Similarity(model_name_or_path=sim_model_name_or_path, device=self.device)
self.gen_model, self.tokenizer = self._init_gen_model(
gen_model_type,
gen_model_name_or_path,
peft_name=lora_model_name_or_path,
int8=int8,
int4=int4,
)
self.history = []
self.doc_files = None
def _init_gen_model(
self,
gen_model_type: str,
gen_model_name_or_path: str,
peft_name: str = None,
int8: bool = False,
int4: bool = False,
):
"""Init generate model."""
if int8 or int4:
device_map = None
else:
device_map = "auto"
model_class, tokenizer_class = MODEL_CLASSES[gen_model_type]
tokenizer = tokenizer_class.from_pretrained(gen_model_name_or_path, trust_remote_code=True)
model = model_class.from_pretrained(
gen_model_name_or_path,
load_in_8bit=int8 if gen_model_type not in ['baichuan', 'chatglm'] else False,
load_in_4bit=int4 if gen_model_type not in ['baichuan', 'chatglm'] else False,
torch_dtype=torch.float16,
low_cpu_mem_usage=True,
device_map=device_map,
trust_remote_code=True,
)
if self.device == torch.device('cpu'):
model.float()
if gen_model_type in ['baichuan', 'chatglm']:
if int4:
model = model.quantize(4).cuda()
elif int8:
model = model.quantize(8).cuda()
try:
model.generation_config = GenerationConfig.from_pretrained(gen_model_name_or_path, trust_remote_code=True)
except Exception as e:
logger.warning(f"Failed to load generation config from {gen_model_name_or_path}, {e}")
if peft_name:
model = PeftModel.from_pretrained(
model,
peft_name,
torch_dtype=torch.float16,
)
logger.info(f"Loaded peft model from {peft_name}")
model.eval()
return model, tokenizer
@torch.inference_mode()
def stream_generate_answer(
self,
prompt,
max_new_tokens=512,
temperature=0.7,
repetition_penalty=1.0,
context_len=2048
):
streamer = TextIteratorStreamer(self.tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
input_ids = self.tokenizer(prompt).input_ids
max_src_len = context_len - max_new_tokens - 8
input_ids = input_ids[-max_src_len:]
generation_kwargs = dict(
input_ids=torch.as_tensor([input_ids]).to(self.device),
max_new_tokens=max_new_tokens,
temperature=temperature,
repetition_penalty=repetition_penalty,
streamer=streamer,
)
thread = Thread(target=self.gen_model.generate, kwargs=generation_kwargs)
thread.start()
yield from streamer
def load_doc_files(self, doc_files: Union[str, List[str]]):
"""Load document files."""
if isinstance(doc_files, str):
doc_files = [doc_files]
for doc_file in doc_files:
if doc_file.endswith('.pdf'):
corpus = self.extract_text_from_pdf(doc_file)
elif doc_file.endswith('.docx'):
corpus = self.extract_text_from_docx(doc_file)
elif doc_file.endswith('.md'):
corpus = self.extract_text_from_markdown(doc_file)
else:
corpus = self.extract_text_from_txt(doc_file)
self.sim_model.add_corpus(corpus)
self.doc_files = doc_files
@staticmethod
def extract_text_from_pdf(file_path: str):
"""Extract text content from a PDF file."""
import PyPDF2
contents = []
with open(file_path, 'rb') as f:
pdf_reader = PyPDF2.PdfReader(f)
for page in pdf_reader.pages:
page_text = page.extract_text().strip()
raw_text = [text.strip() for text in page_text.splitlines() if text.strip()]
new_text = ''
for text in raw_text:
new_text += text
if text[-1] in ['.', '!', '?', '。', '!', '?', '…', ';', ';', ':', ':', '”', '’', ')', '】', '》', '」',
'』', '〕', '〉', '》', '〗', '〞', '〟', '»', '"', "'", ')', ']', '}']:
contents.append(new_text)
new_text = ''
if new_text:
contents.append(new_text)
return contents
@staticmethod
def extract_text_from_txt(file_path: str):
"""Extract text content from a TXT file."""
contents = []
with open(file_path, 'r', encoding='utf-8') as f:
contents = [text.strip() for text in f.readlines() if text.strip()]
return contents
@staticmethod
def extract_text_from_docx(file_path: str):
"""Extract text content from a DOCX file."""
import docx
document = docx.Document(file_path)
contents = [paragraph.text.strip() for paragraph in document.paragraphs if paragraph.text.strip()]
return contents
@staticmethod
def extract_text_from_markdown(file_path: str):
"""Extract text content from a Markdown file."""
import markdown
from bs4 import BeautifulSoup
with open(file_path, 'r', encoding='utf-8') as f:
markdown_text = f.read()
html = markdown.markdown(markdown_text)
soup = BeautifulSoup(html, 'html.parser')
contents = [text.strip() for text in soup.get_text().splitlines() if text.strip()]
return contents
@staticmethod
def _add_source_numbers(lst):
"""Add source numbers to a list of strings."""
return [f'[{idx + 1}]\t "{item}"' for idx, item in enumerate(lst)]
def predict(
self,
query: str,
topn: int = 5,
max_length: int = 512,
context_len: int = 2048,
temperature: float = 0.7,
do_print: bool = True,
):
"""Query from corpus."""
sim_contents = self.sim_model.most_similar(query, topn=topn)
reference_results = []
for query_id, id_score_dict in sim_contents.items():
for corpus_id, s in id_score_dict.items():
reference_results.append(self.sim_model.corpus[corpus_id])
if not reference_results:
return '没有提供足够的相关信息', reference_results
reference_results = self._add_source_numbers(reference_results)
context_str = '\n'.join(reference_results)[:(context_len - len(PROMPT_TEMPLATE))]
prompt = PROMPT_TEMPLATE.format(context_str=context_str, query_str=query)
self.history.append([prompt, ''])
response = ""
for new_text in self.stream_generate_answer(
prompt,
max_new_tokens=max_length,
temperature=temperature,
context_len=context_len,
):
response += new_text
if do_print:
print(new_text, end="", flush=True)
if do_print:
print("", flush=True)
response = response.strip()
self.history[-1][1] = response
return response, reference_results
def save_index(self, index_path=None):
"""Save model."""
if index_path is None:
index_path = '.'.join(self.doc_files.split('.')[:-1]) + '_index.json'
self.sim_model.save_index(index_path)
def load_index(self, index_path=None):
"""Load model."""
if index_path is None:
index_path = '.'.join(self.doc_files.split('.')[:-1]) + '_index.json'
self.sim_model.load_index(index_path)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--sim_model", type=str, default="shibing624/text2vec-base-chinese")
parser.add_argument("--gen_model_type", type=str, default="baichuan")
parser.add_argument("--gen_model", type=str, default="baichuan-inc/Baichuan-13B-Chat")
parser.add_argument("--lora_model", type=str, default=None)
parser.add_argument("--device", type=str, default=None)
parser.add_argument("--int4", action='store_true', help="use int4 quantization")
parser.add_argument("--int8", action='store_true', help="use int8 quantization")
args = parser.parse_args()
print(args)
m = ChatPDF(
sim_model_name_or_path=args.sim_model,
gen_model_type=args.gen_model_type,
gen_model_name_or_path=args.gen_model,
lora_model_name_or_path=args.lora_model,
device=args.device,
int4=args.int4,
int8=args.int8
)
m.load_doc_files(doc_files='sample.pdf')
m.predict('自然语言中的非平行迁移是指什么?', do_print=True)
while True:
query = input("> ")
if query == 'exit':
break
m.predict(query, do_print=True)
|