Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
import time | |
from fastai.vision.all import load_learner | |
from fastai.vision.all import * | |
from PIL import Image | |
from pathlib import Path | |
import pathlib | |
import PIL | |
# Load the exported model | |
model = load_learner("model.pkl") | |
# Function to classify an image | |
def classify_images(imgs): | |
[print(x) for x in imgs] | |
start_time = time.time() | |
results = [] | |
for img in imgs: | |
# Convert gradio image to PIL Image | |
#img = PILImage.create(img) | |
# Perform inference | |
pred_class, pred_idx, pred_probs = model.predict(img) | |
# Format output | |
output = f"Image Name: {Path(img).stem} - Category: {pred_class}" | |
results.append(output) | |
# Calculate total inference time | |
inference_time = time.time() - start_time | |
# Append total inference time to results | |
results.append(f"Total Inference Time: {inference_time:.2f} seconds") | |
return results | |
# Create Gradio interface | |
input_component = gr.File(label="Upload Image", file_count='multiple') | |
output_component = gr.Textbox(label="Classification Results") | |
interface = gr.Interface(fn=classify_images, inputs=input_component, outputs=output_component, title="Image Classifier") | |
# Launch the Gradio interface | |
interface.launch() | |