#from transformers import T5TokenizerFast, T5ForConditionalGeneration import Tensor #from torch.nn import Module from typing import List, Optional, Tuple #import torch, os #import torch.nn.functional as F class T5(): ''' T5 model from: https://huggingface.co/docs/transformers/model_doc/t5 ''' def __init__(self, variant:str="t5-small", max_source_length:int=256, max_target_length:int=128, optimizer_config:dict={}, ): # Assertions assert variant in ["t5-small", "t5-base", "t5-large"] super().__init__() self.variant = variant self.max_source_length = max_source_length self.max_target_length = max_target_length # Tokenizer & model self.tokenizer = T5TokenizerFast.from_pretrained(self.variant, model_max_length=self.max_source_length) self.model = T5ForConditionalGeneration.from_pretrained(self.variant) # Optimizer self.optimizer = torch.optim.AdamW(self.parameters(), **optimizer_config) # Scheduler self.scheduler = None def tokenize(self, input:List[str]): out = self.tokenizer(input, max_length=self.max_source_length, truncation=True, padding=True, return_tensors="pt") return out.input_ids.cuda(), out.attention_mask.cuda() def forward(self, input:List[str], label:Optional[List[str]]=None) -> Tuple[Tensor, Optional[Tensor]]: ''' Will receive input and target string and produce the final output as tensor (not decoded) when target is not None, it will give the loss functions with the output as tuple ''' input_ids, input_masks = self.tokenize(input) if label is not None: label_ids, label_masks = self.tokenize(label) output = self.model(input_ids=input_ids, labels=label_ids) return output.logits, output.loss return self.model.generate(input_ids=input_ids, max_new_tokens=self.max_target_length), None def predict(self, input:List[str]) -> List[str]: ''' Will generate the target output as string ''' logits, loss = self.forward(input=input) return self.tokenizer.batch_decode(logits, skip_special_tokens=True) if __name__ == '__main__': ''' Implement a tester class similar to T5-old.py to test if it works ''' model = T5('t5-small') model.to('cuda') #inputs = [ #"translate English to German: Thank you so much, Chris.", #"translate English to German: I have been blown away by this conference, and I want to thank all of you for the many nice comments about what I had to say the other night.", #"translate German to English: Es ist mir wirklich eine Ehre, zweimal auf dieser Bühne stehen zu dürfen. Tausend Dank dafür.", #] #targets = [ #"Vielen Dank, Chris.", #"Ich bin wirklich begeistert von dieser Konferenz, und ich danke Ihnen allen für die vielen netten Kommentare zu meiner Rede vorgestern Abend.", #"And it's truly a great honor to have the opportunity to come to this stage twice; I'm extremely grateful.", #] inputs = ["Good Morning, How are you?"] targets = ["Buongiorno, come stai?"] logits, loss = model.forward(inputs, targets) print('Model forward') print('logits: ', logits) print('loss: ', loss) outputs = model.predict(inputs) #print('OUTPUT') #print(outputs) for (inp, out), tar in zip(zip(inputs, outputs), targets): print(f"Input: \n{inp}\n\nOutput: \n{out}\n\nTarget: \n{tar}\n\n")