import os; import json; import requests import streamlit as st; from transformers import pipeline ES_URL = os.environ.get("ES_URL") question = 'What is the capital of Netherlands?' query_text = 'Query used for search or question answering (you can also edit, and experiment with the anwers)' written_question = st.text_input(query_text, question) if written_question: question = written_question if st.button('Run semantic question answering'): if question: try: url = f"{ES_URL}/document/_search?pretty" payload = json.dumps({"query":{"match":{"content": question}}}) # "moldova" # payload = json.dumps({"query": { # "more_like_this": { "like": question, # "What is the capital city of Netherlands?" # "fields": ["content"], "min_term_freq": 1.9, "min_doc_freq": 4, "max_query_terms": 50 # }}}) headers = {'Content-Type': 'application/json'} response = requests.request("GET", url, headers=headers, data=payload) kws_result = response.json() # print(response.text) except Exception as e: qa_result = str(e) # top_5_hits = kws_result['hits']['hits'][:5] # print("First 5 results:") top_10_hits = kws_result['hits']['hits'][:10] # print("First 10 results:") top_5_text = [{'text': hit['_source']['content'][:500], 'confidence': hit['_score']} for hit in top_10_hits[:5] ] top_5_para = [hit['_source']['content'] for hit in top_10_hits[:5]] # top_3_para = [hit['_source']['content'] for hit in top_10_hits[:3]] # top_5_para = [hit['_source']['content'][:5000] for hit in top_5_hits] DPR_MODEL = "deepset/roberta-base-squad2" #, model="distilbert-base-cased-distilled-squad" pipe_exqa = pipeline("question-answering", model=DPR_MODEL) qa_results = [pipe_exqa(question=question, context=paragraph) for paragraph in top_5_para] # qa_results = [pipe_exqa(question=question, context=paragraph) for paragraph in top_3_para] qa_results = sorted(qa_results, key=lambda x: x['score'], reverse=True) for i, qa_result in enumerate(qa_results): if "answer" in qa_result.keys(): # and qa_result["answer"] is not "" answer_span, answer_score = qa_result["answer"], qa_result["score"] st.write(f'Answer: **{answer_span}**') # paragraph = top_3_para[i] paragraph = top_5_para[i] start_par, stop_para = max(0, qa_result["start"]-86), min(qa_result["end"]+90, len(paragraph)) answer_context = paragraph[start_par:stop_para].replace(answer_span, f'**{answer_span}**') qa_result.update({'context': answer_context, 'paragraph': paragraph}) st.write(f'Answer context (and score): ... _{answer_context}_ ...') color_string = 'green' if answer_score > 0.65 else 'orange' if answer_score > 0.45 else 'red' # st.markdown("""This text is :red[colored red]""") st.markdown(f'(answer confidence: :{color_string}[{format(answer_score, ".3f")}])') st.write(f'Answers JSON: '); st.write(qa_results) for i, doc_hit in enumerate(top_5_text): st.subheader(f'Search result #{i+1} (and score):') st.write(f'{doc_hit["text"]}...', unsafe_allow_html = True) st.markdown(f'> (*confidence score*: **{format(doc_hit["confidence"], ".3f")}**)') st.write(f'Search results JSON: '); st.write(top_5_text) else: st.write('Write a query to submit your keyword search'); st.stop() # question_similarity = [ (hit['_score'], hit['_source']['content'][:200]) # for hit in result_first_two_hits ] # print(question_similarity) if st.button('Run syntactic keyword search'): if question: try: url = f"{ES_URL}/document/_search?pretty" # payload = json.dumps({"query":{"match":{"content":"moldova"}}}) payload = json.dumps({"query": { "more_like_this": { "like": question, # "What is the capital city of Netherlands?" "fields": ["content"], "min_term_freq": 1.9, "min_doc_freq": 4, "max_query_terms": 50 }}}) headers = {'Content-Type': 'application/json'} response = requests.request("GET", url, headers=headers, data=payload) kws_result = response.json() # print(response.text) # qa_result = pipe_exqa(question=question, context=paragraph) except Exception as e: qa_result = str(e) top_5_hits = kws_result['hits']['hits'][:5] # print("First 5 results:") top_5_text = [{'text': hit['_source']['content'][:500], 'confidence': hit['_score']} for hit in top_5_hits ] for i, doc_hit in enumerate(top_5_text): st.subheader(f'Search result #{i+1} (and score):') st.write(f'{doc_hit["text"]}...', unsafe_allow_html = True) st.markdown(f'> (*confidence score*: **{format(doc_hit["confidence"], ".3f")}**)') st.write(f'Answer JSON: '); st.write(top_5_text) # st.write(qa_result) else: st.write('Write a query to submit your keyword search'); st.stop()