stmnk commited on
Commit
2577872
1 Parent(s): d2d822d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +10 -6
app.py CHANGED
@@ -24,22 +24,26 @@ if st.button('Run semantic question answering'):
24
  except Exception as e:
25
  qa_result = str(e)
26
 
27
- top_5_hits = kws_result['hits']['hits'][:5] # print("First 5 results:")
 
28
  top_5_text = [{'text': hit['_source']['content'][:500],
29
- 'confidence': hit['_score']} for hit in top_5_hits ]
30
- top_3_para = [hit['_source']['content'][:5000] for hit in top_5_hits[:3]]
 
31
  # top_5_para = [hit['_source']['content'][:5000] for hit in top_5_hits]
32
 
33
  DPR_MODEL = "deepset/roberta-base-squad2" #, model="distilbert-base-cased-distilled-squad"
34
  pipe_exqa = pipeline("question-answering", model=DPR_MODEL)
35
- # qa_results = [pipe_exqa(question=question, context=paragraph) for paragraph in top_5_para]
36
- qa_results = [pipe_exqa(question=question, context=paragraph) for paragraph in top_3_para]
 
37
 
38
  for i, qa_result in enumerate(qa_results):
39
  if "answer" in qa_result.keys(): # and qa_result["answer"] is not ""
40
  answer_span, answer_score = qa_result["answer"], qa_result["score"]
41
  st.write(f'Answer: **{answer_span}**')
42
- paragraph = top_3_para[i]
 
43
  start_par, stop_para = max(0, qa_result["start"]-86), min(qa_result["end"]+90, len(paragraph))
44
  answer_context = paragraph[start_par:stop_para].replace(answer_span, f'**{answer_span}**')
45
  qa_result.update({'context': answer_context, 'paragraph': paragraph})
 
24
  except Exception as e:
25
  qa_result = str(e)
26
 
27
+ # top_5_hits = kws_result['hits']['hits'][:5] # print("First 5 results:")
28
+ top_10_hits = kws_result['hits']['hits'][:10] # print("First 10 results:")
29
  top_5_text = [{'text': hit['_source']['content'][:500],
30
+ 'confidence': hit['_score']} for hit in top_10_hits[:5] ]
31
+ top_5_para = [hit['_source']['content'] for hit in top_10_hits[:5]]
32
+ # top_3_para = [hit['_source']['content'] for hit in top_10_hits[:3]]
33
  # top_5_para = [hit['_source']['content'][:5000] for hit in top_5_hits]
34
 
35
  DPR_MODEL = "deepset/roberta-base-squad2" #, model="distilbert-base-cased-distilled-squad"
36
  pipe_exqa = pipeline("question-answering", model=DPR_MODEL)
37
+ qa_results = [pipe_exqa(question=question, context=paragraph) for paragraph in top_5_para]
38
+ # qa_results = [pipe_exqa(question=question, context=paragraph) for paragraph in top_3_para]
39
+ qa_results = sorted(qa_results, key=lambda x: x['score'], reverse=True)
40
 
41
  for i, qa_result in enumerate(qa_results):
42
  if "answer" in qa_result.keys(): # and qa_result["answer"] is not ""
43
  answer_span, answer_score = qa_result["answer"], qa_result["score"]
44
  st.write(f'Answer: **{answer_span}**')
45
+ # paragraph = top_3_para[i]
46
+ paragraph = top_5_para[i]
47
  start_par, stop_para = max(0, qa_result["start"]-86), min(qa_result["end"]+90, len(paragraph))
48
  answer_context = paragraph[start_par:stop_para].replace(answer_span, f'**{answer_span}**')
49
  qa_result.update({'context': answer_context, 'paragraph': paragraph})