Update app.py
Browse files
app.py
CHANGED
@@ -24,22 +24,26 @@ if st.button('Run semantic question answering'):
|
|
24 |
except Exception as e:
|
25 |
qa_result = str(e)
|
26 |
|
27 |
-
top_5_hits = kws_result['hits']['hits'][:5] # print("First 5 results:")
|
|
|
28 |
top_5_text = [{'text': hit['_source']['content'][:500],
|
29 |
-
'confidence': hit['_score']} for hit in
|
30 |
-
|
|
|
31 |
# top_5_para = [hit['_source']['content'][:5000] for hit in top_5_hits]
|
32 |
|
33 |
DPR_MODEL = "deepset/roberta-base-squad2" #, model="distilbert-base-cased-distilled-squad"
|
34 |
pipe_exqa = pipeline("question-answering", model=DPR_MODEL)
|
35 |
-
|
36 |
-
qa_results = [pipe_exqa(question=question, context=paragraph) for paragraph in top_3_para]
|
|
|
37 |
|
38 |
for i, qa_result in enumerate(qa_results):
|
39 |
if "answer" in qa_result.keys(): # and qa_result["answer"] is not ""
|
40 |
answer_span, answer_score = qa_result["answer"], qa_result["score"]
|
41 |
st.write(f'Answer: **{answer_span}**')
|
42 |
-
paragraph = top_3_para[i]
|
|
|
43 |
start_par, stop_para = max(0, qa_result["start"]-86), min(qa_result["end"]+90, len(paragraph))
|
44 |
answer_context = paragraph[start_par:stop_para].replace(answer_span, f'**{answer_span}**')
|
45 |
qa_result.update({'context': answer_context, 'paragraph': paragraph})
|
|
|
24 |
except Exception as e:
|
25 |
qa_result = str(e)
|
26 |
|
27 |
+
# top_5_hits = kws_result['hits']['hits'][:5] # print("First 5 results:")
|
28 |
+
top_10_hits = kws_result['hits']['hits'][:10] # print("First 10 results:")
|
29 |
top_5_text = [{'text': hit['_source']['content'][:500],
|
30 |
+
'confidence': hit['_score']} for hit in top_10_hits[:5] ]
|
31 |
+
top_5_para = [hit['_source']['content'] for hit in top_10_hits[:5]]
|
32 |
+
# top_3_para = [hit['_source']['content'] for hit in top_10_hits[:3]]
|
33 |
# top_5_para = [hit['_source']['content'][:5000] for hit in top_5_hits]
|
34 |
|
35 |
DPR_MODEL = "deepset/roberta-base-squad2" #, model="distilbert-base-cased-distilled-squad"
|
36 |
pipe_exqa = pipeline("question-answering", model=DPR_MODEL)
|
37 |
+
qa_results = [pipe_exqa(question=question, context=paragraph) for paragraph in top_5_para]
|
38 |
+
# qa_results = [pipe_exqa(question=question, context=paragraph) for paragraph in top_3_para]
|
39 |
+
qa_results = sorted(qa_results, key=lambda x: x['score'], reverse=True)
|
40 |
|
41 |
for i, qa_result in enumerate(qa_results):
|
42 |
if "answer" in qa_result.keys(): # and qa_result["answer"] is not ""
|
43 |
answer_span, answer_score = qa_result["answer"], qa_result["score"]
|
44 |
st.write(f'Answer: **{answer_span}**')
|
45 |
+
# paragraph = top_3_para[i]
|
46 |
+
paragraph = top_5_para[i]
|
47 |
start_par, stop_para = max(0, qa_result["start"]-86), min(qa_result["end"]+90, len(paragraph))
|
48 |
answer_context = paragraph[start_par:stop_para].replace(answer_span, f'**{answer_span}**')
|
49 |
qa_result.update({'context': answer_context, 'paragraph': paragraph})
|