Spaces:
Runtime error
Runtime error
import streamlit as st | |
from pyvis.network import Network | |
import plotly.express as px | |
from sklearn.metrics.pairwise import cosine_similarity | |
from sentence_transformers import SentenceTransformer | |
from bertopic import BERTopic | |
from sklearn.feature_extraction.text import CountVectorizer | |
import pandas as pd | |
import numpy as np | |
import networkx as nx | |
import textwrap | |
import logging | |
logger = logging.getLogger('main') | |
def reset_default_topic_sliders(min_topic_size, n_gram_range): | |
st.session_state['min_topic_size'] = min_topic_size | |
st.session_state['n_gram_range'] = n_gram_range | |
def reset_default_threshold_slider(threshold): | |
st.session_state['threshold'] = threshold | |
def load_data(uploaded_file): | |
data = pd.read_csv(uploaded_file) | |
return data | |
def embedding_gen(data): | |
logger.info('Calculating Embeddings') | |
return SentenceTransformer('allenai-specter').encode(data['Text']) | |
def load_bertopic_model(min_topic_size, n_gram_range): | |
logger.info('Loading BERTopic model') | |
return BERTopic( | |
vectorizer_model=CountVectorizer( | |
stop_words='english', ngram_range=n_gram_range | |
), | |
min_topic_size=min_topic_size, | |
verbose=True | |
) | |
def topic_modeling(data, min_topic_size, n_gram_range): | |
"""Topic modeling using BERTopic | |
""" | |
logger.info('Calculating Topic Model') | |
topic_model = load_bertopic_model(min_topic_size, n_gram_range) | |
# Train the topic model | |
topic_data = data.copy() | |
topic_data["Topic"], topic_data["Probs"] = topic_model.fit_transform( | |
data['Text'], embeddings=embedding_gen(data)) | |
# Merge topic results | |
topic_df = topic_model.get_topic_info() | |
topic_df.columns = ['Topic', 'Topic_Count', 'Topic_Name'] | |
topic_df = topic_df.sort_values(by='Topic_Count', ascending=False) | |
topic_data = topic_data.merge(topic_df, on='Topic', how='left') | |
# Topics | |
# Optimization: Only take top 10 largest topics | |
topics = topic_df.head(10).set_index('Topic').to_dict(orient='index') | |
return topic_data, topic_model, topics | |
def cosine_sim(data): | |
logger.info('Cosine similarity') | |
cosine_sim_matrix = cosine_similarity(embedding_gen(data)) | |
# Take only upper triangular matrix | |
cosine_sim_matrix = np.triu(cosine_sim_matrix, k=1) | |
return cosine_sim_matrix | |
def calc_max_connections(num_papers, ratio): | |
n = ratio*num_papers | |
return n*(n-1)/2 | |
def calc_optimal_threshold(cosine_sim_matrix, max_connections): | |
"""Calculates the optimal threshold for the cosine similarity matrix. | |
Allows a max of max_connections | |
""" | |
logger.info('Calculating optimal threshold') | |
thresh_sweep = np.arange(0.05, 1.05, 0.05)[::-1] | |
for idx, threshold in enumerate(thresh_sweep): | |
neighbors = np.argwhere(cosine_sim_matrix >= threshold).tolist() | |
if len(neighbors) > max_connections: | |
break | |
return round(thresh_sweep[idx-1], 2).item(), round(thresh_sweep[idx], 2).item() | |
def calc_neighbors(cosine_sim_matrix, threshold): | |
logger.info('Calculating neighbors') | |
neighbors = np.argwhere(cosine_sim_matrix >= threshold).tolist() | |
return neighbors, len(neighbors) | |
def nx_hash_func(nx_net): | |
"""Hash function for NetworkX graphs. | |
""" | |
return (list(nx_net.nodes()), list(nx_net.edges())) | |
def pyvis_hash_func(pyvis_net): | |
"""Hash function for pyvis graphs. | |
""" | |
return (pyvis_net.nodes, pyvis_net.edges) | |
def network_plot(topic_data, topics, neighbors): | |
"""Creates a network plot of connected papers. Colored by Topic Model topics. | |
""" | |
logger.info('Calculating Network Plot') | |
nx_net = nx.Graph() | |
pyvis_net = Network(height='750px', width='100%', bgcolor='#222222') | |
# Add Nodes | |
nodes = [ | |
( | |
row.Index, | |
{ | |
'group': row.Topic, | |
'label': row.Index, | |
'title': row.Text, | |
'size': 20, 'font': {'size': 20, 'color': 'white'} | |
} | |
) | |
for row in topic_data.itertuples() | |
] | |
nx_net.add_nodes_from(nodes) | |
assert(nx_net.number_of_nodes() == len(topic_data)) | |
# Add Edges | |
nx_net.add_edges_from(neighbors) | |
assert(nx_net.number_of_edges() == len(neighbors)) | |
# Optimization: Remove Isolated nodes | |
nx_net.remove_nodes_from(list(nx.isolates(nx_net))) | |
# Add Legend Nodes | |
step = 150 | |
x = -2000 | |
y = -500 | |
legend_nodes = [ | |
( | |
len(topic_data)+idx, | |
{ | |
'group': key, 'label': ', '.join(value['Topic_Name'].split('_')[1:]), | |
'size': 30, 'physics': False, 'x': x, 'y': f'{y + idx*step}px', | |
# , 'fixed': True, | |
'shape': 'box', 'widthConstraint': 1000, 'font': {'size': 40, 'color': 'black'} | |
} | |
) | |
for idx, (key, value) in enumerate(topics.items()) | |
] | |
nx_net.add_nodes_from(legend_nodes) | |
# Plot the Pyvis graph | |
pyvis_net.from_nx(nx_net) | |
return nx_net, pyvis_net | |
def text_processing(text): | |
text = text.split('[SEP]') | |
text = '<br><br>'.join(text) | |
text = '<br>'.join(textwrap.wrap(text, width=50))[:500] | |
text = text + '...' | |
return text | |
def network_centrality(topic_data, centrality, centrality_option): | |
"""Calculates the centrality of the network | |
""" | |
logger.info('Calculating Network Centrality') | |
# Sort Top 10 Central nodes | |
central_nodes = sorted( | |
centrality.items(), key=lambda item: item[1], reverse=True) | |
central_nodes = pd.DataFrame(central_nodes, columns=[ | |
'node', centrality_option]).set_index('node') | |
joined_data = topic_data.join(central_nodes) | |
top_central_nodes = joined_data.sort_values( | |
centrality_option, ascending=False).head(10) | |
# Prepare for plot | |
top_central_nodes = top_central_nodes.reset_index() | |
top_central_nodes['index'] = top_central_nodes['index'].astype(str) | |
top_central_nodes['Topic_Name'] = top_central_nodes['Topic_Name'].apply( | |
lambda x: ', '.join(x.split('_')[1:])) | |
top_central_nodes['Text'] = top_central_nodes['Text'].apply( | |
text_processing) | |
# Plot the Top 10 Central nodes | |
fig = px.bar(top_central_nodes, x=centrality_option, y='index', | |
color='Topic_Name', hover_data=['Text'], orientation='h') | |
fig.update_layout(yaxis={'categoryorder': 'total ascending', 'visible': False, 'showticklabels': False}, | |
font={'size': 15}, height=800) | |
return fig | |