Spaces:
Running
on
L4
Running
on
L4
// xy: 2D test position | |
// v1: vertex position 1 | |
// v2: vertex position 2 | |
// v3: vertex position 3 | |
// | |
bool barycentric_coordinates(float2 xy, float2 v1, float2 v2, float2 v3, out float u, out float v, out float w) | |
{ | |
// Return true if the point (x,y) is inside the triangle defined by the vertices v1, v2, v3. | |
// If the point is inside the triangle, the barycentric coordinates are stored in u, v, and w. | |
float2 v1v2 = v2 - v1; | |
float2 v1v3 = v3 - v1; | |
float2 xyv1 = xy - v1; | |
float d00 = dot(v1v2, v1v2); | |
float d01 = dot(v1v2, v1v3); | |
float d11 = dot(v1v3, v1v3); | |
float d20 = dot(xyv1, v1v2); | |
float d21 = dot(xyv1, v1v3); | |
float denom = d00 * d11 - d01 * d01; | |
v = (d11 * d20 - d01 * d21) / denom; | |
w = (d00 * d21 - d01 * d20) / denom; | |
u = 1.0 - v - w; | |
return (v >= 0.0) && (w >= 0.0) && (v + w <= 1.0); | |
} | |
[AutoPyBindCUDA] | |
[CUDAKernel] | |
void interpolate( | |
TensorView<float3> attr, | |
TensorView<int3> indices, | |
TensorView<float4> rast, | |
TensorView<float3> output) | |
{ | |
// Interpolate the attr into output based on the rast result (barycentric coordinates, + triangle idx) | |
uint3 dispatch_id = cudaBlockIdx() * cudaBlockDim() + cudaThreadIdx(); | |
if (dispatch_id.x > output.size(0) || dispatch_id.y > output.size(1)) | |
return; | |
float4 barycentric = rast[dispatch_id.x, dispatch_id.y]; | |
int triangle_idx = int(barycentric.w); | |
if (triangle_idx < 0) { | |
output[dispatch_id.x, dispatch_id.y] = float3(0.0, 0.0, 0.0); | |
return; | |
} | |
float3 v1 = attr[indices[triangle_idx].x]; | |
float3 v2 = attr[indices[triangle_idx].y]; | |
float3 v3 = attr[indices[triangle_idx].z]; | |
output[dispatch_id.x, dispatch_id.y] = v1 * barycentric.x + v2 * barycentric.y + v3 * barycentric.z; | |
} | |
[AutoPyBindCUDA] | |
[CUDAKernel] | |
void bake_uv( | |
TensorView<float2> uv, | |
TensorView<int3> indices, | |
TensorView<float4> output) | |
{ | |
uint3 dispatch_id = cudaBlockIdx() * cudaBlockDim() + cudaThreadIdx(); | |
if (dispatch_id.y > output.size(0) || dispatch_id.x > output.size(1)) | |
return; | |
// We index x,y but the orginal coords are HW. So swap them | |
float2 pixel_coord = float2(dispatch_id.y, dispatch_id.x); | |
// Normalize to [0, 1] | |
pixel_coord /= float2(output.size(1), output.size(0)); | |
pixel_coord = clamp(pixel_coord, 0.0, 1.0); | |
// Flip x-axis | |
pixel_coord.y = 1 - pixel_coord.y; | |
for (int i = 0; i < indices.size(0); i++) { | |
float2 v1 = float2(uv[indices[i].x].x, uv[indices[i].x].y); | |
float2 v2 = float2(uv[indices[i].y].x, uv[indices[i].y].y); | |
float2 v3 = float2(uv[indices[i].z].x, uv[indices[i].z].y); | |
float u, v, w; | |
bool hit = barycentric_coordinates(pixel_coord, v1, v2, v3, u, v, w); | |
if (hit){ | |
output[dispatch_id.x, dispatch_id.y] = float4(u, v, w, i); | |
return; | |
} | |
} | |
output[dispatch_id.x, dispatch_id.y] = float4(0.0, 0.0, 0.0, -1); | |
} | |