Spaces:
Sleeping
Sleeping
from flask import Flask,render_template,jsonify,request | |
from src.helper import * | |
from src.prompt import * | |
from langchain_groq import ChatGroq | |
from langchain_community.document_loaders import WebBaseLoader | |
from langchain_community.embeddings import OllamaEmbeddings | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.chains.combine_documents import create_stuff_documents_chain | |
from langchain_core.prompts import ChatPromptTemplate | |
from langchain.chains import create_retrieval_chain | |
from langchain_community.vectorstores import FAISS | |
from langchain_community.document_loaders import PyPDFLoader | |
from langchain_community.document_loaders import PyPDFDirectoryLoader | |
from langchain_community.embeddings import HuggingFaceBgeEmbeddings | |
# from langchain.vectorstores.cassandra import Cassandra | |
from langchain_community.vectorstores import Cassandra | |
from langchain.prompts import PromptTemplate | |
from langchain_community.llms import Ollama | |
from cassandra.auth import PlainTextAuthProvider | |
import tempfile | |
import cassio | |
from PyPDF2 import PdfReader | |
from cassandra.cluster import Cluster | |
import warnings | |
warnings.filterwarnings("ignore") | |
import os | |
from dotenv import load_dotenv | |
import time | |
load_dotenv() | |
app = Flask(__name__) | |
groq_api_key=os.getenv('GROQ_API_KEY') | |
LANGCHAIN_TRACING_V2="true" | |
LANGCHAIN_API_KEY=os.getenv('LANGCHAIN_API_KEY') | |
LANGCHAIN_PROJECT="medical_bot" | |
LANGCHAIN_ENDPOINT="https://api.smith.langchain.com" | |
prompt=PromptTemplate(template=prompt_template, input_variables=["context", "question"]) | |
# print(PROMPT) | |
llm=ChatGroq(groq_api_key=groq_api_key,model_name="mixtral-8x7b-32768") | |
# file_path="data/Medical_book.pdf" | |
# file_path='https://github.com/SrinidDev/Medical_GPT/blob/main/data/Medical_book.pdf' | |
file_path='Medical_book.pdf' | |
pinecone_vector_store=doc_loader(file_path) | |
# print(type(pinecone_vector_store)) | |
def generate_response(llm,prompt,pinecone_vector_store,question): | |
# print('HELLO!Im from gen reponse fn') | |
document_chain=create_stuff_documents_chain(llm,prompt) | |
# print('document chain:',prompt) | |
retriever=pinecone_vector_store.as_retriever(search_type="similarity",search_kwargs={"k":5}) | |
# print('HELLO!Im after retriever') | |
retrieval_chain=create_retrieval_chain(retriever,document_chain) | |
# print('HELLO!Im after retrieval chain') | |
response=retrieval_chain.invoke({"input":question}) | |
# print('im response from fn',response) | |
return response | |
def index(): | |
print('Hello before chat html') | |
# return "<p>Hello, Team!</p>" | |
return render_template('chat.html') | |
def chat(): | |
msg = request.form["msg"] | |
question = msg | |
print(question) | |
result=generate_response(llm,prompt,pinecone_vector_store,question) | |
# print("Response : ", result['answer']) | |
return result['answer'] | |
if __name__ == '__main__': | |
app.run(debug= True) | |