Medical_GPT / app.py
srinidhidevaraj's picture
added book
3625ac8
raw
history blame
2.93 kB
from flask import Flask,render_template,jsonify,request
from src.helper import *
from src.prompt import *
from langchain_groq import ChatGroq
from langchain_community.document_loaders import WebBaseLoader
from langchain_community.embeddings import OllamaEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.chains.combine_documents import create_stuff_documents_chain
from langchain_core.prompts import ChatPromptTemplate
from langchain.chains import create_retrieval_chain
from langchain_community.vectorstores import FAISS
from langchain_community.document_loaders import PyPDFLoader
from langchain_community.document_loaders import PyPDFDirectoryLoader
from langchain_community.embeddings import HuggingFaceBgeEmbeddings
# from langchain.vectorstores.cassandra import Cassandra
from langchain_community.vectorstores import Cassandra
from langchain.prompts import PromptTemplate
from langchain_community.llms import Ollama
from cassandra.auth import PlainTextAuthProvider
import tempfile
import cassio
from PyPDF2 import PdfReader
from cassandra.cluster import Cluster
import warnings
warnings.filterwarnings("ignore")
import os
from dotenv import load_dotenv
import time
load_dotenv()
app = Flask(__name__)
groq_api_key=os.getenv('GROQ_API_KEY')
LANGCHAIN_TRACING_V2="true"
LANGCHAIN_API_KEY=os.getenv('LANGCHAIN_API_KEY')
LANGCHAIN_PROJECT="medical_bot"
LANGCHAIN_ENDPOINT="https://api.smith.langchain.com"
prompt=PromptTemplate(template=prompt_template, input_variables=["context", "question"])
# print(PROMPT)
llm=ChatGroq(groq_api_key=groq_api_key,model_name="mixtral-8x7b-32768")
# file_path="data/Medical_book.pdf"
# file_path='https://github.com/SrinidDev/Medical_GPT/blob/main/data/Medical_book.pdf'
file_path='Medical_book.pdf'
pinecone_vector_store=doc_loader(file_path)
# print(type(pinecone_vector_store))
def generate_response(llm,prompt,pinecone_vector_store,question):
# print('HELLO!Im from gen reponse fn')
document_chain=create_stuff_documents_chain(llm,prompt)
# print('document chain:',prompt)
retriever=pinecone_vector_store.as_retriever(search_type="similarity",search_kwargs={"k":5})
# print('HELLO!Im after retriever')
retrieval_chain=create_retrieval_chain(retriever,document_chain)
# print('HELLO!Im after retrieval chain')
response=retrieval_chain.invoke({"input":question})
# print('im response from fn',response)
return response
@app.route("/")
def index():
print('Hello before chat html')
# return "<p>Hello, Team!</p>"
return render_template('templates/chat.html')
@app.route("/get", methods=["GET", "POST"])
def chat():
msg = request.form["msg"]
question = msg
print(question)
result=generate_response(llm,prompt,pinecone_vector_store,question)
# print("Response : ", result['answer'])
return result['answer']
if __name__ == '__main__':
app.run(debug= True)