import langchain as lc from langchain.chat_models import ChatOpenAI from langchain.schema import HumanMessage, SystemMessage, AIMessage from langchain import PromptTemplate, LLMChain, HuggingFaceHub, OpenAI, FewShotPromptTemplate from langchain.prompts.example_selector import LengthBasedExampleSelector from langchain.chains import ConversationChain, MapReduceChain from langchain.memory import ConversationBufferMemory, ConversationSummaryBufferMemory from langchain.callbacks import get_openai_callback import os from langchain.chains import LLMMathChain, SQLDatabaseChain from langchain.agents import Tool, load_tools, initialize_agent, AgentType from langchain.agents.react.base import DocstoreExplorer import gradio as gr def demo8(): model = OpenAI(openai_api_key=os.environ['OPENAI_API_KEY']) tools = load_tools(['llm-math', 'terminal'], llm=model) prompt = PromptTemplate(template="{question}", input_variables=['question']) llm_chain = LLMChain(llm=model, prompt=prompt) llm_tool = Tool(name="Search", func=llm_chain.run, description="general QA") tools.append(llm_tool) memory = ConversationBufferMemory(memory_key="chat_history") conversation_agent = initialize_agent(tools=tools, llm=model, max_iterations=3, verbose=True, agent=AgentType.CONVERSATIONAL_REACT_DESCRIPTION, memory=memory) # resp = conversation_agent("what is (4.5*2.1)^2.2?") def answer(question, history=[]): history.append(question) resp = conversation_agent(question) print(f"resp: {resp}") history.append(resp['output']) dial = [(u, v) for u, v in zip(history[::2], history[1::2])] return { chatbot: dial, state: history } with gr.Blocks() as demo: chatbot = gr.Chatbot(elem_id="chatbot") state = gr.State([]) with gr.Row(): text = gr.Textbox(show_label=False, placeholder="enter your prompt") text.submit(answer, inputs=[text, state], outputs=[chatbot, state]) demo.launch() if __name__ == "__main__": demo8()