|
import langchain as lc |
|
from langchain.chat_models import ChatOpenAI |
|
from langchain.schema import HumanMessage, SystemMessage, AIMessage |
|
from langchain import PromptTemplate, LLMChain, HuggingFaceHub, OpenAI, FewShotPromptTemplate |
|
from langchain.prompts.example_selector import LengthBasedExampleSelector |
|
from langchain.chains import ConversationChain, MapReduceChain |
|
from langchain.memory import ConversationBufferMemory, ConversationSummaryBufferMemory |
|
from langchain.callbacks import get_openai_callback |
|
|
|
import os |
|
|
|
from langchain.chains import LLMMathChain, SQLDatabaseChain |
|
from langchain.agents import Tool, load_tools, initialize_agent, AgentType |
|
from langchain.agents.react.base import DocstoreExplorer |
|
|
|
import gradio as gr |
|
|
|
def demo8(): |
|
|
|
model = OpenAI(openai_api_key=os.environ['OPENAI_API_KEY']) |
|
tools = load_tools(['llm-math', 'terminal'], llm=model) |
|
|
|
prompt = PromptTemplate(template="{question}", input_variables=['question']) |
|
llm_chain = LLMChain(llm=model, prompt=prompt) |
|
llm_tool = Tool(name="Search", func=llm_chain.run, description="general QA") |
|
tools.append(llm_tool) |
|
|
|
memory = ConversationBufferMemory(memory_key="chat_history") |
|
conversation_agent = initialize_agent(tools=tools, |
|
llm=model, |
|
max_iterations=3, |
|
verbose=True, |
|
agent=AgentType.CONVERSATIONAL_REACT_DESCRIPTION, |
|
memory=memory) |
|
|
|
def answer(question, history=[]): |
|
history.append(question) |
|
resp = conversation_agent(question) |
|
print(f"resp: {resp}") |
|
history.append(resp['output']) |
|
dial = [(u, v) for u, v in zip(history[::2], history[1::2])] |
|
return { |
|
chatbot: dial, |
|
state: history |
|
} |
|
|
|
|
|
with gr.Blocks() as demo: |
|
chatbot = gr.Chatbot(elem_id="chatbot") |
|
state = gr.State([]) |
|
|
|
with gr.Row(): |
|
text = gr.Textbox(show_label=False, placeholder="enter your prompt") |
|
text.submit(answer, inputs=[text, state], outputs=[chatbot, state]) |
|
|
|
demo.launch() |
|
|
|
if __name__ == "__main__": |
|
demo8() |
|
|