Spaces:
Runtime error
Runtime error
from huggingface_hub import from_pretrained_keras | |
import gradio as gr | |
from PIL import Image | |
import tensorflow as tf | |
import numpy as np | |
import os | |
# load model | |
model = tf.keras.models.load_model('./tf_model.h5') # from keras-io/semantic-segmentation | |
# gradio components | |
inputs = gr.inputs.Image() | |
outputs = gr.outputs.Image() | |
# inference fn | |
def predict(inputs): | |
# convert img to numpy array, resize and normalize to make the prediction | |
img = np.array(inputs) | |
im = tf.image.resize(img, (128, 128)) | |
im = tf.cast(im, tf.float32) / 255.0 | |
pred_mask = model.predict(im[tf.newaxis, ...]) | |
# take the best performing class for each pixel | |
# the output of argmax looks like this [[1, 2, 0], ...] | |
pred_mask_arg = tf.argmax(pred_mask, axis=-1) | |
labels = [] | |
# convert the prediction mask into binary masks for each class | |
binary_masks = {} | |
mask_codes = {} | |
# when we take tf.argmax() over pred_mask, it becomes a tensor object | |
# the shape becomes TensorShape object, looking like this TensorShape([128]) | |
# we need to take get shape, convert to list and take the best one | |
rows = pred_mask_arg[0][1].get_shape().as_list()[0] | |
cols = pred_mask_arg[0][2].get_shape().as_list()[0] | |
for cls in range(pred_mask.shape[-1]): | |
binary_masks[f"mask_{cls}"] = np.zeros(shape = (pred_mask.shape[1], pred_mask.shape[2])) #create masks for each class | |
for row in range(rows): | |
for col in range(cols): | |
if pred_mask_arg[0][row][col] == cls: | |
binary_masks[f"mask_{cls}"][row][col] = 1 | |
else: | |
binary_masks[f"mask_{cls}"][row][col] = 0 | |
mask = binary_masks[f"mask_{cls}"] | |
mask *= 255 | |
img = Image.fromarray(mask.astype(np.int8), mode="L") | |
return img | |
gr.Interface(predict, inputs = inputs, outputs = outputs).launch() |