clem's picture
clem HF staff
add link to model
1c9a107
raw
history blame
3.38 kB
import gradio as gr
import random, os, shutil
from PIL import Image
import pandas as pd
def open_ims(adj, group, seed):
if group != '':
if adj != '':
prompt=adj+'_'+group.replace(' ','_')
if os.path.isdir(prompt) == False:
shutil.unpack_archive('zipped_images/'+ prompt.replace(' ', '_') +'.zip', prompt, 'zip')
else:
prompt=group
if os.path.isdir(prompt) == False:
shutil.unpack_archive('zipped_images/'+ prompt.replace(' ', '_') +'.zip', prompt, 'zip')
imnames= os.listdir(prompt+'/Seed_'+ str(seed)+'/')
images = [(Image.open(prompt+'/Seed_'+ str(seed)+'/'+name)) for name in imnames]
return images[:9]
vowels = ["a","e","i","o","u"]
prompts = pd.read_csv('promptsadjectives.csv')
seeds = [46267, 48040, 51237, 54325, 60884, 64830, 67031, 72935, 92118, 93109]
m_adjectives = prompts['Masc-adj'].tolist()[:10]
f_adjectives = prompts['Fem-adj'].tolist()[:10]
adjectives = sorted(m_adjectives+f_adjectives)
#adjectives = ['attractive','strong']
adjectives.insert(0, '')
professions = sorted([p.lower() for p in prompts['Occupation-Noun'].tolist()])
with gr.Blocks() as demo:
gr.Markdown("# Stable Diffusion Explorer")
gr.Markdown("## Choose from the prompts below to explore how the [Stable Diffusion v1.4 model] (https://huggingface.co/CompVis/stable-diffusion-v-1-4-original) represents different professions and adjectives")
# seed_choice = gr.State(0)
# seed_choice = 93109
# print("Seed choice is: " + str(seed_choice))
with gr.Row():
with gr.Column():
adj1 = gr.Dropdown(adjectives, label = "Choose a first adjective (or leave this blank!)", interactive=True)
choice1 = gr.Dropdown(professions, label = "Choose a first group", interactive=True)
seed1= gr.Dropdown(seeds, label = "Choose a random seed to compare results", value = seeds[1], interactive=True)
images1 = gr.Gallery(label="Images").style(grid=[3], height="auto")
with gr.Column():
adj2 = gr.Dropdown(adjectives, label = "Choose a second adjective (or leave this blank!)", interactive=True)
choice2 = gr.Dropdown(professions, label = "Choose a second group", interactive=True)
seed2= gr.Dropdown(seeds, label = "Choose a random seed to compare results", value= seeds[1], interactive=True)
images2 = gr.Gallery(label="Images").style(grid=[3], height="auto")
gr.Markdown("### [Research](http://gender-decoder.katmatfield.com/static/documents/Gaucher-Friesen-Kay-JPSP-Gendered-Wording-in-Job-ads.pdf) has shown that \
certain words are considered more masculine- or feminine-coded based on how appealing job descriptions containing these words \
seemed to male and female research participants and to what extent the participants felt that they 'belonged' in that occupation.")
#demo.load(random_image, None, [images])
choice1.change(open_ims, [adj1,choice1,seed1], [images1])
choice2.change(open_ims, [adj2,choice2,seed2], [images2])
adj1.change(open_ims, [adj1,choice1,seed1], [images1])
adj2.change(open_ims, [adj2,choice2,seed2], [images2])
seed1.change(open_ims, [adj1,choice1,seed1], [images1])
seed2.change(open_ims, [adj2,choice2,seed2], [images2])
demo.launch()