Spaces:
Sleeping
Sleeping
smhavens
commited on
Commit
•
3922a86
1
Parent(s):
a2c6b40
Massive changes, using better dataset and now returning random masks
Browse files- analogy_train.py +301 -0
- app.py +117 -44
- bert-analogies/1_Pooling/config.json +7 -0
- bert-analogies/README.md +88 -0
- bert-analogies/config.json +26 -0
- bert-analogies/config_sentence_transformers.json +7 -0
- bert-analogies/model.safetensors +3 -0
- bert-analogies/modules.json +20 -0
- bert-analogies/sentence_bert_config.json +4 -0
- bert-analogies/special_tokens_map.json +7 -0
- bert-analogies/tokenizer.json +0 -0
- bert-analogies/tokenizer_config.json +64 -0
- bert-analogies/vocab.txt +0 -0
analogy_train.py
ADDED
@@ -0,0 +1,301 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import math
|
3 |
+
import spacy
|
4 |
+
from datasets import load_dataset
|
5 |
+
from sentence_transformers import SentenceTransformer
|
6 |
+
from sentence_transformers import InputExample
|
7 |
+
from sentence_transformers import losses
|
8 |
+
from transformers import AutoTokenizer, AutoModel, AutoModelForSequenceClassification
|
9 |
+
from transformers import TrainingArguments, Trainer
|
10 |
+
import torch
|
11 |
+
import torch.nn.functional as F
|
12 |
+
from torch.utils.data import DataLoader
|
13 |
+
import numpy as np
|
14 |
+
import evaluate
|
15 |
+
import nltk
|
16 |
+
from nltk.corpus import stopwords
|
17 |
+
import subprocess
|
18 |
+
import sys
|
19 |
+
from transformers import DataCollatorWithPadding
|
20 |
+
from transformers import TrainingArguments
|
21 |
+
from transformers import (
|
22 |
+
BertModel,
|
23 |
+
BertTokenizerFast,
|
24 |
+
Trainer,
|
25 |
+
EvalPrediction
|
26 |
+
)
|
27 |
+
|
28 |
+
# !pip install https://huggingface.co/spacy/en_core_web_sm/resolve/main/en_core_web_sm-any-py3-none-any.whl
|
29 |
+
# subprocess.check_call([sys.executable, '-m', 'pip', 'install', 'https://huggingface.co/spacy/en_core_web_sm/resolve/main/en_core_web_sm-any-py3-none-any.whl'])
|
30 |
+
# tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
|
31 |
+
# data_collator = DataCollatorWithPadding(tokenizer=tokenizer)
|
32 |
+
# nltk.download('stopwords')
|
33 |
+
# nlp = spacy.load("en_core_web_sm")
|
34 |
+
# stops = stopwords.words("english")
|
35 |
+
|
36 |
+
# answer = "Pizza"
|
37 |
+
guesses = []
|
38 |
+
answer = "Pizza"
|
39 |
+
|
40 |
+
tokenizer = BertTokenizerFast.from_pretrained('bert-base-uncased')
|
41 |
+
metric = evaluate.load("accuracy")
|
42 |
+
|
43 |
+
def tokenize_function(examples):
|
44 |
+
return tokenizer(examples["stem"], padding="max_length", truncation=True)
|
45 |
+
|
46 |
+
|
47 |
+
#Mean Pooling - Take attention mask into account for correct averaging
|
48 |
+
def mean_pooling(model_output, attention_mask):
|
49 |
+
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
|
50 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
51 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
52 |
+
|
53 |
+
|
54 |
+
def compute_metrics(eval_pred):
|
55 |
+
logits, labels = eval_pred
|
56 |
+
predictions = np.argmax(logits, axis=-1)
|
57 |
+
metric = evaluate.load("accuracy")
|
58 |
+
return metric.compute(predictions=predictions, references=labels)
|
59 |
+
|
60 |
+
|
61 |
+
# def training():
|
62 |
+
# dataset_id = "relbert/analogy_questions"
|
63 |
+
# dataset_sub = "bats"
|
64 |
+
# print("GETTING DATASET")
|
65 |
+
# raw_dataset = load_dataset(dataset_id, dataset_sub)
|
66 |
+
# # data_metric = evaluate.load(dataset_id, dataset_sub)
|
67 |
+
# checkpoint = "bert-base-uncased"
|
68 |
+
# model = BertModel.from_pretrained(checkpoint)
|
69 |
+
# # dataset = dataset["train"]
|
70 |
+
# # tokenized_datasets = dataset.map(tokenize_function, batched=True)
|
71 |
+
# # print(raw_dataset)
|
72 |
+
# test_data = raw_dataset["test"]
|
73 |
+
# # print(test_data["stem"])
|
74 |
+
# all_answers = []
|
75 |
+
# for answer in raw_dataset["answer"]:
|
76 |
+
# answer = raw_dataset["choice"][answer]
|
77 |
+
# raw_dataset = raw_dataset.add_column("label", all_answers)
|
78 |
+
|
79 |
+
|
80 |
+
# print(raw_dataset)
|
81 |
+
# print(raw_dataset["label"])
|
82 |
+
# dataset = raw_dataset.map(
|
83 |
+
# lambda x: tokenizer(x["stem"], truncation=True),
|
84 |
+
# batched=True,
|
85 |
+
# )
|
86 |
+
# print(dataset)
|
87 |
+
# dataset = dataset.remove_columns(["stem", "answer", "choice"])
|
88 |
+
# dataset = dataset.rename_column("label", "labels")
|
89 |
+
# dataset = dataset.with_format("torch")
|
90 |
+
|
91 |
+
# training_args = TrainingArguments("test-trainer", evaluation_strategy="epoch")
|
92 |
+
|
93 |
+
# print(dataset)
|
94 |
+
# # print(f"- The {dataset_id} dataset has {dataset.num_rows} examples.")
|
95 |
+
# # print(f"- Each example is a {type(dataset[0])} with a {type(dataset[0]['stem'])} as value.")
|
96 |
+
# # print(f"- Examples look like this: {dataset[0]}")
|
97 |
+
|
98 |
+
# # small_train_dataset = tokenized_datasets["train"].shuffle(seed=42).select(range(1000))
|
99 |
+
# # small_eval_dataset = tokenized_datasets["test"].shuffle(seed=42).select(range(1000))
|
100 |
+
|
101 |
+
# # dataset = dataset["train"].map(tokenize_function, batched=True)
|
102 |
+
# # dataset.set_format(type="torch", columns=["input_ids", "token_type_ids", "attention_mask", "label"])
|
103 |
+
# # dataset.format['type']
|
104 |
+
|
105 |
+
# # tokenized_news = dataset.map(tokenize_function, batched=True)
|
106 |
+
|
107 |
+
# # model = AutoModelForSequenceClassification.from_pretrained("sentence-transformers/all-MiniLM-L6-v2", num_labels=2)
|
108 |
+
|
109 |
+
# # print(dataset)
|
110 |
+
|
111 |
+
# # Choose the appropriate device based on availability (CUDA or CPU)
|
112 |
+
# # gpu_available = torch.cuda.is_available()
|
113 |
+
# # device = torch.device("cuda" if gpu_available else "cpu")
|
114 |
+
# # model = AutoModelForSequenceClassification.from_pretrained('bert-base-uncased')
|
115 |
+
|
116 |
+
# # tokenized_datasets = dataset.map(tokenize_function, batched=True)
|
117 |
+
# # print(tokenized_datasets)
|
118 |
+
# # # small_train_dataset = tokenized_datasets["test"].shuffle(seed=42).select(range(1000))
|
119 |
+
# # # small_eval_dataset = tokenized_datasets["validation"].shuffle(seed=42).select(range(1000))
|
120 |
+
|
121 |
+
# # model = model.to(device)
|
122 |
+
|
123 |
+
# # model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", num_labels=5)
|
124 |
+
# # training_args = TrainingArguments(output_dir="test_trainer")
|
125 |
+
|
126 |
+
# trainer = Trainer(
|
127 |
+
# model=model,
|
128 |
+
# args=training_args,
|
129 |
+
# train_dataset=dataset["test"],
|
130 |
+
# eval_dataset=dataset["validation"],
|
131 |
+
# compute_metrics=compute_metrics,
|
132 |
+
# )
|
133 |
+
|
134 |
+
# output = trainer.train()
|
135 |
+
|
136 |
+
# # train_examples = []
|
137 |
+
# # train_data = dataset["train"]
|
138 |
+
# # # For agility we only 1/2 of our available data
|
139 |
+
# # n_examples = dataset["train"].num_rows // 2
|
140 |
+
|
141 |
+
# # for i in range(n_examples):
|
142 |
+
# # example = train_data[i]
|
143 |
+
# # # example_opposite = dataset_clean[-(i)]
|
144 |
+
# # # print(example["text"])
|
145 |
+
# # train_examples.append(InputExample(texts=[example['stem'], example]))
|
146 |
+
|
147 |
+
|
148 |
+
# # train_dataloader = DataLoader(train_examples, shuffle=True, batch_size=25)
|
149 |
+
|
150 |
+
# # print("END DATALOADER")
|
151 |
+
|
152 |
+
# # # print(train_examples)
|
153 |
+
|
154 |
+
# # embeddings = finetune(train_dataloader)
|
155 |
+
# print(output)
|
156 |
+
|
157 |
+
# model.save("bert-analogies")
|
158 |
+
|
159 |
+
# model.save_to_hub("smhavens/bert-base-analogies")
|
160 |
+
# return output
|
161 |
+
|
162 |
+
|
163 |
+
# def finetune(train_dataloader):
|
164 |
+
# # model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", num_labels=5)
|
165 |
+
# model_id = "sentence-transformers/all-MiniLM-L6-v2"
|
166 |
+
# model = SentenceTransformer(model_id)
|
167 |
+
# device = torch.device('cuda:0')
|
168 |
+
# model = model.to(device)
|
169 |
+
|
170 |
+
# # training_args = TrainingArguments(output_dir="test_trainer")
|
171 |
+
|
172 |
+
# # USE THIS LINK
|
173 |
+
# # https://huggingface.co/blog/how-to-train-sentence-transformers
|
174 |
+
|
175 |
+
# train_loss = losses.BatchHardSoftMarginTripletLoss(model=model)
|
176 |
+
|
177 |
+
# print("BEGIN FIT")
|
178 |
+
|
179 |
+
# model.fit(train_objectives=[(train_dataloader, train_loss)], epochs=10)
|
180 |
+
|
181 |
+
# model.save("bert-analogies")
|
182 |
+
|
183 |
+
# model.save_to_hub("smhavens/bert-base-analogies")
|
184 |
+
# return 0
|
185 |
+
|
186 |
+
def training():
|
187 |
+
dataset_id = "relbert/analogy_questions"
|
188 |
+
dataset_sub = "bats"
|
189 |
+
print("GETTING DATASET")
|
190 |
+
dataset = load_dataset(dataset_id, dataset_sub)
|
191 |
+
# dataset = dataset["train"]
|
192 |
+
# tokenized_datasets = dataset.map(tokenize_function, batched=True)
|
193 |
+
|
194 |
+
print(f"- The {dataset_id} dataset has {dataset['test'].num_rows} examples.")
|
195 |
+
print(f"- Each example is a {type(dataset['test'][0])} with a {type(dataset['test'][0]['stem'])} as value.")
|
196 |
+
print(f"- Examples look like this: {dataset['test'][0]}")
|
197 |
+
|
198 |
+
train_examples = []
|
199 |
+
train_data = dataset["test"]
|
200 |
+
# For agility we only 1/2 of our available data
|
201 |
+
n_examples = dataset["test"].num_rows // 2
|
202 |
+
|
203 |
+
for i in range(n_examples):
|
204 |
+
example = train_data[i]
|
205 |
+
temp_word_1 = example["stem"][0]
|
206 |
+
temp_word_2 = example["stem"][1]
|
207 |
+
temp_word_3 = example["choice"][example["answer"]][0]
|
208 |
+
temp_word_4 = example["choice"][example["answer"]][1]
|
209 |
+
comp1 = f"{temp_word_1} to {temp_word_2}"
|
210 |
+
comp2 = f"{temp_word_3} to {temp_word_4}"
|
211 |
+
# example_opposite = dataset_clean[-(i)]
|
212 |
+
# print(example["text"])
|
213 |
+
train_examples.append(InputExample(texts=[comp1, comp2]))
|
214 |
+
|
215 |
+
|
216 |
+
train_dataloader = DataLoader(train_examples, shuffle=True, batch_size=25)
|
217 |
+
|
218 |
+
print("END DATALOADER")
|
219 |
+
|
220 |
+
# print(train_examples)
|
221 |
+
|
222 |
+
embeddings = finetune(train_dataloader)
|
223 |
+
|
224 |
+
return (dataset['test'].num_rows, type(dataset['test'][0]), type(dataset['test'][0]['stem']), dataset['test'][0], embeddings)
|
225 |
+
|
226 |
+
|
227 |
+
def finetune(train_dataloader):
|
228 |
+
# model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", num_labels=5)
|
229 |
+
model_id = "sentence-transformers/all-MiniLM-L6-v2"
|
230 |
+
model = SentenceTransformer(model_id)
|
231 |
+
device = torch.device('cuda:0')
|
232 |
+
model = model.to(device)
|
233 |
+
|
234 |
+
# training_args = TrainingArguments(output_dir="test_trainer")
|
235 |
+
|
236 |
+
# USE THIS LINK
|
237 |
+
# https://huggingface.co/blog/how-to-train-sentence-transformers
|
238 |
+
|
239 |
+
train_loss = losses.MegaBatchMarginLoss(model=model)
|
240 |
+
|
241 |
+
print("BEGIN FIT")
|
242 |
+
|
243 |
+
model.fit(train_objectives=[(train_dataloader, train_loss)], epochs=10)
|
244 |
+
|
245 |
+
model.save("bert-analogies")
|
246 |
+
|
247 |
+
# model.save_to_hub("smhavens/bert-base-analogies")
|
248 |
+
# accuracy = compute_metrics(eval, metric)
|
249 |
+
return 0
|
250 |
+
|
251 |
+
def greet(name):
|
252 |
+
return "Hello " + name + "!!"
|
253 |
+
|
254 |
+
def check_answer(guess:str):
|
255 |
+
global guesses
|
256 |
+
global answer
|
257 |
+
guesses.append(guess)
|
258 |
+
output = ""
|
259 |
+
for guess in guesses:
|
260 |
+
output += ("- " + guess + "\n")
|
261 |
+
output = output[:-1]
|
262 |
+
|
263 |
+
if guess.lower() == answer.lower():
|
264 |
+
return "Correct!", output
|
265 |
+
else:
|
266 |
+
return "Try again!", output
|
267 |
+
|
268 |
+
def main():
|
269 |
+
print("BEGIN")
|
270 |
+
word1 = "Black"
|
271 |
+
word2 = "White"
|
272 |
+
word3 = "Sun"
|
273 |
+
global answer
|
274 |
+
answer = "Moon"
|
275 |
+
global guesses
|
276 |
+
|
277 |
+
num_rows, data_type, value, example, embeddings = training()
|
278 |
+
|
279 |
+
# prompt = f"{word1} is to {word2} as {word3} is to ____"
|
280 |
+
# with gr.Blocks() as iface:
|
281 |
+
# gr.Markdown(prompt)
|
282 |
+
# with gr.Tab("Guess"):
|
283 |
+
# text_input = gr.Textbox()
|
284 |
+
# text_output = gr.Textbox()
|
285 |
+
# text_button = gr.Button("Submit")
|
286 |
+
# with gr.Accordion("Open for previous guesses"):
|
287 |
+
# text_guesses = gr.Textbox()
|
288 |
+
# with gr.Tab("Testing"):
|
289 |
+
# gr.Markdown(f"""Number of rows in dataset is {num_rows}, with each having type {data_type} and value {value}.
|
290 |
+
# An example is {example}.
|
291 |
+
# The Embeddings are {embeddings}.""")
|
292 |
+
# text_button.click(check_answer, inputs=[text_input], outputs=[text_output, text_guesses])
|
293 |
+
# # iface = gr.Interface(fn=greet, inputs="text", outputs="text")
|
294 |
+
# iface.launch()
|
295 |
+
|
296 |
+
|
297 |
+
|
298 |
+
|
299 |
+
|
300 |
+
if __name__ == "__main__":
|
301 |
+
main()
|
app.py
CHANGED
@@ -5,6 +5,8 @@ from datasets import load_dataset
|
|
5 |
from sentence_transformers import SentenceTransformer
|
6 |
from sentence_transformers import InputExample
|
7 |
from sentence_transformers import losses
|
|
|
|
|
8 |
from transformers import AutoTokenizer, AutoModel, AutoModelForSequenceClassification
|
9 |
from transformers import TrainingArguments, Trainer
|
10 |
import torch
|
@@ -16,6 +18,7 @@ import nltk
|
|
16 |
from nltk.corpus import stopwords
|
17 |
import subprocess
|
18 |
import sys
|
|
|
19 |
|
20 |
# !pip install https://huggingface.co/spacy/en_core_web_sm/resolve/main/en_core_web_sm-any-py3-none-any.whl
|
21 |
subprocess.check_call([sys.executable, '-m', 'pip', 'install', 'https://huggingface.co/spacy/en_core_web_sm/resolve/main/en_core_web_sm-any-py3-none-any.whl'])
|
@@ -23,10 +26,20 @@ subprocess.check_call([sys.executable, '-m', 'pip', 'install', 'https://huggingf
|
|
23 |
nltk.download('stopwords')
|
24 |
nlp = spacy.load("en_core_web_sm")
|
25 |
stops = stopwords.words("english")
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
# answer = "Pizza"
|
28 |
guesses = []
|
29 |
-
|
|
|
|
|
|
|
|
|
30 |
|
31 |
|
32 |
#Mean Pooling - Take attention mask into account for correct averaging
|
@@ -134,65 +147,108 @@ def finetune(train_dataloader):
|
|
134 |
|
135 |
# trainer.train()
|
136 |
|
137 |
-
|
138 |
-
|
|
|
139 |
device = torch.device('cuda:0')
|
140 |
model = model.to(device)
|
141 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
142 |
|
143 |
-
|
|
|
|
|
|
|
144 |
embeddings = model.encode(sentences)
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
sentences = ['This is an example sentence', 'Each sentence is converted']
|
149 |
|
150 |
# Load model from HuggingFace Hub
|
151 |
-
tokenizer = AutoTokenizer.from_pretrained('
|
152 |
-
# model = AutoModel.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
|
153 |
-
|
154 |
-
# Tokenize sentences
|
155 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
# print(encoded_input["token_type_ids"].device)
|
161 |
encoded_input["input_ids"] = encoded_input["input_ids"].to(device)
|
162 |
encoded_input["attention_mask"] = encoded_input["attention_mask"].to(device)
|
163 |
encoded_input['token_type_ids'] = encoded_input['token_type_ids'].to(device)
|
164 |
-
# print(encoded_input)
|
165 |
-
|
166 |
-
# print(encoded_input["input_ids"].device)
|
167 |
-
# print(encoded_input["attention_mask"].device)
|
168 |
-
# print(encoded_input["token_type_ids"].device)
|
169 |
|
170 |
encoded_input['input'] = {'input_ids':encoded_input['input_ids'], 'attention_mask':encoded_input['attention_mask']}
|
171 |
|
172 |
-
# + encoded_input['token_type_ids'] + encoded_input['attention_mask']
|
173 |
del encoded_input['input_ids']
|
174 |
del encoded_input['token_type_ids']
|
175 |
del encoded_input['attention_mask']
|
176 |
|
177 |
-
# print(encoded_input)
|
178 |
-
|
179 |
-
# encoded_input.to(device)
|
180 |
-
# Compute token embeddings
|
181 |
with torch.no_grad():
|
|
|
|
|
182 |
model_output = model(**encoded_input)
|
|
|
|
|
|
|
|
|
|
|
183 |
|
184 |
-
print(model_output)
|
185 |
# Perform pooling
|
186 |
sentence_embeddings = mean_pooling(model_output, encoded_input['input']["attention_mask"])
|
187 |
|
188 |
# Normalize embeddings
|
189 |
sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1)
|
190 |
|
191 |
-
|
192 |
-
|
193 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
194 |
|
195 |
-
|
196 |
|
197 |
def greet(name):
|
198 |
return "Hello " + name + "!!"
|
@@ -200,29 +256,46 @@ def greet(name):
|
|
200 |
def check_answer(guess:str):
|
201 |
global guesses
|
202 |
global answer
|
203 |
-
|
|
|
204 |
output = ""
|
205 |
-
|
206 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
207 |
output = output[:-1]
|
|
|
208 |
|
209 |
-
|
|
|
210 |
return "Correct!", output
|
211 |
else:
|
|
|
212 |
return "Try again!", output
|
213 |
|
214 |
def main():
|
215 |
-
word1
|
216 |
-
word2
|
217 |
-
word3
|
218 |
global answer
|
219 |
-
answer = "Moon"
|
220 |
global guesses
|
221 |
|
|
|
222 |
# num_rows, data_type, value, example, embeddings = training()
|
223 |
-
sent_embeddings = embeddings()
|
|
|
|
|
224 |
|
225 |
prompt = f"{word1} is to {word2} as {word3} is to ____"
|
|
|
|
|
226 |
with gr.Blocks() as iface:
|
227 |
gr.Markdown(prompt)
|
228 |
with gr.Tab("Guess"):
|
@@ -231,8 +304,8 @@ def main():
|
|
231 |
text_button = gr.Button("Submit")
|
232 |
with gr.Accordion("Open for previous guesses"):
|
233 |
text_guesses = gr.Textbox()
|
234 |
-
with gr.Tab("Testing"):
|
235 |
-
|
236 |
text_button.click(check_answer, inputs=[text_input], outputs=[text_output, text_guesses])
|
237 |
# iface = gr.Interface(fn=greet, inputs="text", outputs="text")
|
238 |
iface.launch()
|
|
|
5 |
from sentence_transformers import SentenceTransformer
|
6 |
from sentence_transformers import InputExample
|
7 |
from sentence_transformers import losses
|
8 |
+
from sentence_transformers import util
|
9 |
+
from transformers import pipeline
|
10 |
from transformers import AutoTokenizer, AutoModel, AutoModelForSequenceClassification
|
11 |
from transformers import TrainingArguments, Trainer
|
12 |
import torch
|
|
|
18 |
from nltk.corpus import stopwords
|
19 |
import subprocess
|
20 |
import sys
|
21 |
+
import random
|
22 |
|
23 |
# !pip install https://huggingface.co/spacy/en_core_web_sm/resolve/main/en_core_web_sm-any-py3-none-any.whl
|
24 |
subprocess.check_call([sys.executable, '-m', 'pip', 'install', 'https://huggingface.co/spacy/en_core_web_sm/resolve/main/en_core_web_sm-any-py3-none-any.whl'])
|
|
|
26 |
nltk.download('stopwords')
|
27 |
nlp = spacy.load("en_core_web_sm")
|
28 |
stops = stopwords.words("english")
|
29 |
+
ROMAN_CONSTANTS = (
|
30 |
+
( "", "I", "II", "III", "IV", "V", "VI", "VII", "VIII", "IX" ),
|
31 |
+
( "", "X", "XX", "XXX", "XL", "L", "LX", "LXX", "LXXX", "XC" ),
|
32 |
+
( "", "C", "CC", "CCC", "CD", "D", "DC", "DCC", "DCCC", "CM" ),
|
33 |
+
( "", "M", "MM", "MMM", "", "", "-", "", "", "" ),
|
34 |
+
)
|
35 |
|
36 |
# answer = "Pizza"
|
37 |
guesses = []
|
38 |
+
return_guesses = []
|
39 |
+
answer = "Moon"
|
40 |
+
word1 = "Black"
|
41 |
+
word2 = "White"
|
42 |
+
word3 = "Sun"
|
43 |
|
44 |
|
45 |
#Mean Pooling - Take attention mask into account for correct averaging
|
|
|
147 |
|
148 |
# trainer.train()
|
149 |
|
150 |
+
|
151 |
+
def get_model():
|
152 |
+
model = SentenceTransformer("bert-analogies")
|
153 |
device = torch.device('cuda:0')
|
154 |
model = model.to(device)
|
155 |
+
return model
|
156 |
+
|
157 |
+
|
158 |
+
def cosine_scores(model, sentence):
|
159 |
+
global word1
|
160 |
+
global word2
|
161 |
+
global word3
|
162 |
+
# sentence1 = f"{word1} is to {word2} as"
|
163 |
+
embeddings1 = model.encode(sentence, convert_to_tensor=True)
|
164 |
|
165 |
+
def embeddings(model, sentences):
|
166 |
+
gpu_available = torch.cuda.is_available()
|
167 |
+
device = torch.device("cuda" if gpu_available else "cpu")
|
168 |
+
# device = torch.device('cuda:0')
|
169 |
embeddings = model.encode(sentences)
|
170 |
+
global word1
|
171 |
+
global word2
|
172 |
+
global word3
|
|
|
173 |
|
174 |
# Load model from HuggingFace Hub
|
175 |
+
tokenizer = AutoTokenizer.from_pretrained('bert-analogies')
|
|
|
|
|
|
|
176 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
177 |
+
token_ids = tokenizer.encode(sentences, return_tensors='pt')
|
178 |
+
blank_id = tokenizer.mask_token_id
|
179 |
+
blank_id_idx = torch.where(encoded_input["input_ids"] == blank_id)[1]
|
180 |
+
|
|
|
181 |
encoded_input["input_ids"] = encoded_input["input_ids"].to(device)
|
182 |
encoded_input["attention_mask"] = encoded_input["attention_mask"].to(device)
|
183 |
encoded_input['token_type_ids'] = encoded_input['token_type_ids'].to(device)
|
|
|
|
|
|
|
|
|
|
|
184 |
|
185 |
encoded_input['input'] = {'input_ids':encoded_input['input_ids'], 'attention_mask':encoded_input['attention_mask']}
|
186 |
|
|
|
187 |
del encoded_input['input_ids']
|
188 |
del encoded_input['token_type_ids']
|
189 |
del encoded_input['attention_mask']
|
190 |
|
|
|
|
|
|
|
|
|
191 |
with torch.no_grad():
|
192 |
+
# output = model(encoded_input)
|
193 |
+
print(encoded_input)
|
194 |
model_output = model(**encoded_input)
|
195 |
+
# output = model(encoded_input_topk)
|
196 |
+
|
197 |
+
unmasker = pipeline('fill-mask', model='bert-analogies')
|
198 |
+
guesses = unmasker(sentences)
|
199 |
+
print(guesses)
|
200 |
|
|
|
201 |
# Perform pooling
|
202 |
sentence_embeddings = mean_pooling(model_output, encoded_input['input']["attention_mask"])
|
203 |
|
204 |
# Normalize embeddings
|
205 |
sentence_embeddings = F.normalize(sentence_embeddings, p=2, dim=1)
|
206 |
|
207 |
+
potential_words = []
|
208 |
+
for guess in guesses:
|
209 |
+
temp_word = guess['token_str']
|
210 |
+
if temp_word[0].isalpha() and temp_word not in stops and temp_word not in ROMAN_CONSTANTS:
|
211 |
+
potential_words.append(guess['token_str'])
|
212 |
+
|
213 |
+
return potential_words
|
214 |
+
|
215 |
+
|
216 |
+
def random_word():
|
217 |
+
with open('ag_news_model/vocab.txt', 'r') as file:
|
218 |
+
line = ""
|
219 |
+
content = file.readlines()
|
220 |
+
length = len(content)
|
221 |
+
while line == "":
|
222 |
+
rand_line = random.randrange(1997, length)
|
223 |
+
|
224 |
+
if content[rand_line][0].isalpha() and content[rand_line][:-1] not in stops and content[rand_line][:-1] not in ROMAN_CONSTANTS:
|
225 |
+
line = content[rand_line]
|
226 |
+
else:
|
227 |
+
print(f"{content[rand_line]} is not alpha or is a stop word")
|
228 |
+
# for num, aline in enumerate(file, 1997):
|
229 |
+
# if random.randrange(num) and aline.isalpha():
|
230 |
+
# continue
|
231 |
+
# # elif not aline.isalpha():
|
232 |
+
|
233 |
+
# line = aline
|
234 |
+
print(line)
|
235 |
+
return line[:-1]
|
236 |
+
|
237 |
+
|
238 |
+
def generate_prompt(model):
|
239 |
+
global word1
|
240 |
+
global word2
|
241 |
+
global word3
|
242 |
+
global answer
|
243 |
+
word1 = random_word()
|
244 |
+
word2 = random_word()
|
245 |
+
word3 = random_word()
|
246 |
+
sentence = f"{word1} is to {word2} as {word3} is to [MASK]"
|
247 |
+
print(sentence)
|
248 |
+
answer = embeddings(model, sentence)[0]
|
249 |
+
print("ANSWER IS", answer)
|
250 |
+
# cosine_scores(model, sentence)
|
251 |
|
|
|
252 |
|
253 |
def greet(name):
|
254 |
return "Hello " + name + "!!"
|
|
|
256 |
def check_answer(guess:str):
|
257 |
global guesses
|
258 |
global answer
|
259 |
+
global return_guesses
|
260 |
+
model = get_model()
|
261 |
output = ""
|
262 |
+
protected_guess = guess
|
263 |
+
sentence = f"{word1} is to {word2} as [MASK] is to {guess}"
|
264 |
+
other_word = embeddings(model, sentence)[0]
|
265 |
+
guesses.append(guess)
|
266 |
+
print("GUESS IS", guess)
|
267 |
+
return_guess = f"{guess}: {word1} is to {word2} as {other_word} is to {guess}"
|
268 |
+
print("GUESS IS", guess)
|
269 |
+
return_guesses.append(return_guess)
|
270 |
+
for guess in return_guesses:
|
271 |
+
output += (guess + "\n")
|
272 |
output = output[:-1]
|
273 |
+
print("GUESS IS", protected_guess)
|
274 |
|
275 |
+
print("IS", protected_guess, "EQUAL TO", answer, ":", protected_guess.lower() == answer.lower())
|
276 |
+
if protected_guess.lower() == answer.lower():
|
277 |
return "Correct!", output
|
278 |
else:
|
279 |
+
|
280 |
return "Try again!", output
|
281 |
|
282 |
def main():
|
283 |
+
global word1
|
284 |
+
global word2
|
285 |
+
global word3
|
286 |
global answer
|
287 |
+
# answer = "Moon"
|
288 |
global guesses
|
289 |
|
290 |
+
|
291 |
# num_rows, data_type, value, example, embeddings = training()
|
292 |
+
# sent_embeddings = embeddings()
|
293 |
+
model = get_model()
|
294 |
+
generate_prompt(model)
|
295 |
|
296 |
prompt = f"{word1} is to {word2} as {word3} is to ____"
|
297 |
+
print(prompt)
|
298 |
+
print("TESTING EMBEDDINGS")
|
299 |
with gr.Blocks() as iface:
|
300 |
gr.Markdown(prompt)
|
301 |
with gr.Tab("Guess"):
|
|
|
304 |
text_button = gr.Button("Submit")
|
305 |
with gr.Accordion("Open for previous guesses"):
|
306 |
text_guesses = gr.Textbox()
|
307 |
+
# with gr.Tab("Testing"):
|
308 |
+
# gr.Markdown(f"""The Embeddings are {sent_embeddings}.""")
|
309 |
text_button.click(check_answer, inputs=[text_input], outputs=[text_output, text_guesses])
|
310 |
# iface = gr.Interface(fn=greet, inputs="text", outputs="text")
|
311 |
iface.launch()
|
bert-analogies/1_Pooling/config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 384,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false
|
7 |
+
}
|
bert-analogies/README.md
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
pipeline_tag: sentence-similarity
|
3 |
+
tags:
|
4 |
+
- sentence-transformers
|
5 |
+
- feature-extraction
|
6 |
+
- sentence-similarity
|
7 |
+
|
8 |
+
---
|
9 |
+
|
10 |
+
# {MODEL_NAME}
|
11 |
+
|
12 |
+
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
13 |
+
|
14 |
+
<!--- Describe your model here -->
|
15 |
+
|
16 |
+
## Usage (Sentence-Transformers)
|
17 |
+
|
18 |
+
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
19 |
+
|
20 |
+
```
|
21 |
+
pip install -U sentence-transformers
|
22 |
+
```
|
23 |
+
|
24 |
+
Then you can use the model like this:
|
25 |
+
|
26 |
+
```python
|
27 |
+
from sentence_transformers import SentenceTransformer
|
28 |
+
sentences = ["This is an example sentence", "Each sentence is converted"]
|
29 |
+
|
30 |
+
model = SentenceTransformer('{MODEL_NAME}')
|
31 |
+
embeddings = model.encode(sentences)
|
32 |
+
print(embeddings)
|
33 |
+
```
|
34 |
+
|
35 |
+
|
36 |
+
|
37 |
+
## Evaluation Results
|
38 |
+
|
39 |
+
<!--- Describe how your model was evaluated -->
|
40 |
+
|
41 |
+
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
|
42 |
+
|
43 |
+
|
44 |
+
## Training
|
45 |
+
The model was trained with the parameters:
|
46 |
+
|
47 |
+
**DataLoader**:
|
48 |
+
|
49 |
+
`torch.utils.data.dataloader.DataLoader` of length 36 with parameters:
|
50 |
+
```
|
51 |
+
{'batch_size': 25, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
|
52 |
+
```
|
53 |
+
|
54 |
+
**Loss**:
|
55 |
+
|
56 |
+
`sentence_transformers.losses.MegaBatchMarginLoss.MegaBatchMarginLoss`
|
57 |
+
|
58 |
+
Parameters of the fit()-Method:
|
59 |
+
```
|
60 |
+
{
|
61 |
+
"epochs": 10,
|
62 |
+
"evaluation_steps": 0,
|
63 |
+
"evaluator": "NoneType",
|
64 |
+
"max_grad_norm": 1,
|
65 |
+
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
|
66 |
+
"optimizer_params": {
|
67 |
+
"lr": 2e-05
|
68 |
+
},
|
69 |
+
"scheduler": "WarmupLinear",
|
70 |
+
"steps_per_epoch": null,
|
71 |
+
"warmup_steps": 10000,
|
72 |
+
"weight_decay": 0.01
|
73 |
+
}
|
74 |
+
```
|
75 |
+
|
76 |
+
|
77 |
+
## Full Model Architecture
|
78 |
+
```
|
79 |
+
SentenceTransformer(
|
80 |
+
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
|
81 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
82 |
+
(2): Normalize()
|
83 |
+
)
|
84 |
+
```
|
85 |
+
|
86 |
+
## Citing & Authors
|
87 |
+
|
88 |
+
<!--- Describe where people can find more information -->
|
bert-analogies/config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "/home/smhavens/.cache/torch/sentence_transformers/sentence-transformers_all-MiniLM-L6-v2/",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 384,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 1536,
|
14 |
+
"layer_norm_eps": 1e-12,
|
15 |
+
"max_position_embeddings": 512,
|
16 |
+
"model_type": "bert",
|
17 |
+
"num_attention_heads": 12,
|
18 |
+
"num_hidden_layers": 6,
|
19 |
+
"pad_token_id": 0,
|
20 |
+
"position_embedding_type": "absolute",
|
21 |
+
"torch_dtype": "float32",
|
22 |
+
"transformers_version": "4.35.2",
|
23 |
+
"type_vocab_size": 2,
|
24 |
+
"use_cache": true,
|
25 |
+
"vocab_size": 30522
|
26 |
+
}
|
bert-analogies/config_sentence_transformers.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.0.0",
|
4 |
+
"transformers": "4.6.1",
|
5 |
+
"pytorch": "1.8.1"
|
6 |
+
}
|
7 |
+
}
|
bert-analogies/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a0f7c659ba309023355f651ecbe72279f6caef5fe5f274e59168f1bcedb36368
|
3 |
+
size 90864192
|
bert-analogies/modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
bert-analogies/sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 256,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
bert-analogies/special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
bert-analogies/tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
bert-analogies/tokenizer_config.json
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": true,
|
48 |
+
"mask_token": "[MASK]",
|
49 |
+
"max_length": 128,
|
50 |
+
"model_max_length": 512,
|
51 |
+
"never_split": null,
|
52 |
+
"pad_to_multiple_of": null,
|
53 |
+
"pad_token": "[PAD]",
|
54 |
+
"pad_token_type_id": 0,
|
55 |
+
"padding_side": "right",
|
56 |
+
"sep_token": "[SEP]",
|
57 |
+
"stride": 0,
|
58 |
+
"strip_accents": null,
|
59 |
+
"tokenize_chinese_chars": true,
|
60 |
+
"tokenizer_class": "BertTokenizer",
|
61 |
+
"truncation_side": "right",
|
62 |
+
"truncation_strategy": "longest_first",
|
63 |
+
"unk_token": "[UNK]"
|
64 |
+
}
|
bert-analogies/vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|