Spaces:
Sleeping
Sleeping
smhavens
commited on
Commit
•
052d58f
1
Parent(s):
3835be6
Update model calls to use variable.
Browse files
app.py
CHANGED
@@ -23,6 +23,7 @@ import random
|
|
23 |
# !pip install https://huggingface.co/spacy/en_core_web_sm/resolve/main/en_core_web_sm-any-py3-none-any.whl
|
24 |
subprocess.check_call([sys.executable, '-m', 'pip', 'install', 'https://huggingface.co/spacy/en_core_web_sm/resolve/main/en_core_web_sm-any-py3-none-any.whl'])
|
25 |
# tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
|
|
|
26 |
nltk.download('stopwords')
|
27 |
nlp = spacy.load("en_core_web_sm")
|
28 |
stops = stopwords.words("english")
|
@@ -75,85 +76,11 @@ def compute_metrics(eval_pred):
|
|
75 |
predictions = np.argmax(logits, axis=-1)
|
76 |
metric = evaluate.load("accuracy")
|
77 |
return metric.compute(predictions=predictions, references=labels)
|
78 |
-
|
79 |
-
|
80 |
-
def training():
|
81 |
-
dataset_id = "ag_news"
|
82 |
-
dataset = load_dataset(dataset_id)
|
83 |
-
# dataset = dataset["train"]
|
84 |
-
# tokenized_datasets = dataset.map(tokenize_function, batched=True)
|
85 |
-
|
86 |
-
print(f"- The {dataset_id} dataset has {dataset['train'].num_rows} examples.")
|
87 |
-
print(f"- Each example is a {type(dataset['train'][0])} with a {type(dataset['train'][0]['text'])} as value.")
|
88 |
-
print(f"- Examples look like this: {dataset['train'][0]}")
|
89 |
-
|
90 |
-
# small_train_dataset = tokenized_datasets["train"].shuffle(seed=42).select(range(1000))
|
91 |
-
# small_eval_dataset = tokenized_datasets["test"].shuffle(seed=42).select(range(1000))
|
92 |
-
|
93 |
-
# dataset = dataset["train"].map(tokenize_function, batched=True)
|
94 |
-
# dataset.set_format(type="torch", columns=["input_ids", "token_type_ids", "attention_mask", "label"])
|
95 |
-
# dataset.format['type']
|
96 |
-
|
97 |
-
# print(dataset)
|
98 |
-
|
99 |
-
train_examples = []
|
100 |
-
train_data = dataset["train"]
|
101 |
-
# For agility we only 1/2 of our available data
|
102 |
-
n_examples = dataset["train"].num_rows // 2
|
103 |
-
|
104 |
-
for i in range(n_examples):
|
105 |
-
example = train_data[i]
|
106 |
-
# example_opposite = dataset_clean[-(i)]
|
107 |
-
# print(example["text"])
|
108 |
-
train_examples.append(InputExample(texts=[example['text']], label=example['label']))
|
109 |
-
|
110 |
-
train_dataloader = DataLoader(train_examples, shuffle=True, batch_size=25)
|
111 |
-
|
112 |
-
print("END DATALOADER")
|
113 |
-
|
114 |
-
# print(train_examples)
|
115 |
-
|
116 |
-
embeddings = finetune(train_dataloader)
|
117 |
-
|
118 |
-
return (dataset['train'].num_rows, type(dataset['train'][0]), type(dataset['train'][0]['text']), dataset['train'][0], embeddings)
|
119 |
-
|
120 |
-
|
121 |
-
def finetune(train_dataloader):
|
122 |
-
# model = AutoModelForSequenceClassification.from_pretrained("bert-base-cased", num_labels=5)
|
123 |
-
model_id = "sentence-transformers/all-MiniLM-L6-v2"
|
124 |
-
model = SentenceTransformer(model_id)
|
125 |
-
|
126 |
-
# training_args = TrainingArguments(output_dir="test_trainer")
|
127 |
-
|
128 |
-
# USE THIS LINK
|
129 |
-
# https://huggingface.co/blog/how-to-train-sentence-transformers
|
130 |
-
|
131 |
-
train_loss = losses.BatchHardSoftMarginTripletLoss(model=model)
|
132 |
-
|
133 |
-
print("BEGIN FIT")
|
134 |
-
|
135 |
-
model.fit(train_objectives=[(train_dataloader, train_loss)], epochs=10)
|
136 |
-
|
137 |
-
model.save("ag_news_model")
|
138 |
-
|
139 |
-
model.save_to_hub("smhavens/all-MiniLM-agNews")
|
140 |
-
# accuracy = compute_metrics(eval, metric)
|
141 |
-
|
142 |
-
# training_args = TrainingArguments(output_dir="test_trainer", evaluation_strategy="epoch")
|
143 |
-
|
144 |
-
# trainer = Trainer(
|
145 |
-
# model=model,
|
146 |
-
# args=training_args,
|
147 |
-
# train_dataset=train,
|
148 |
-
# eval_dataset=eval,
|
149 |
-
# compute_metrics=compute_metrics,
|
150 |
-
# )
|
151 |
-
|
152 |
-
# trainer.train()
|
153 |
|
154 |
|
155 |
def get_model():
|
156 |
-
|
|
|
157 |
gpu_available = torch.cuda.is_available()
|
158 |
device = torch.device("cuda" if gpu_available else "cpu")
|
159 |
model = model.to(device)
|
@@ -175,9 +102,10 @@ def embeddings(model, sentences):
|
|
175 |
global word1
|
176 |
global word2
|
177 |
global word3
|
|
|
178 |
|
179 |
# Load model from HuggingFace Hub
|
180 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
181 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
182 |
# token_ids = tokenizer.encode(sentences, return_tensors='pt')
|
183 |
# blank_id = tokenizer.mask_token_id
|
@@ -199,7 +127,7 @@ def embeddings(model, sentences):
|
|
199 |
model_output = model(**encoded_input)
|
200 |
# output = model(encoded_input_topk)
|
201 |
|
202 |
-
unmasker = pipeline('fill-mask', model=
|
203 |
guesses = unmasker(sentences)
|
204 |
print(guesses)
|
205 |
|
@@ -223,12 +151,13 @@ def embeddings(model, sentences):
|
|
223 |
|
224 |
|
225 |
def random_word():
|
226 |
-
|
|
|
227 |
line = ""
|
228 |
content = file.readlines()
|
229 |
length = len(content)
|
230 |
while line == "":
|
231 |
-
rand_line = random.randrange(
|
232 |
|
233 |
if content[rand_line][0].isalpha() and content[rand_line][:-1] not in stops and content[rand_line][:-1] not in ROMAN_CONSTANTS:
|
234 |
line = content[rand_line]
|
|
|
23 |
# !pip install https://huggingface.co/spacy/en_core_web_sm/resolve/main/en_core_web_sm-any-py3-none-any.whl
|
24 |
subprocess.check_call([sys.executable, '-m', 'pip', 'install', 'https://huggingface.co/spacy/en_core_web_sm/resolve/main/en_core_web_sm-any-py3-none-any.whl'])
|
25 |
# tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/all-MiniLM-L6-v2')
|
26 |
+
model_base = "bert-analogies"
|
27 |
nltk.download('stopwords')
|
28 |
nlp = spacy.load("en_core_web_sm")
|
29 |
stops = stopwords.words("english")
|
|
|
76 |
predictions = np.argmax(logits, axis=-1)
|
77 |
metric = evaluate.load("accuracy")
|
78 |
return metric.compute(predictions=predictions, references=labels)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
|
81 |
def get_model():
|
82 |
+
global model_base
|
83 |
+
model = SentenceTransformer(model_base)
|
84 |
gpu_available = torch.cuda.is_available()
|
85 |
device = torch.device("cuda" if gpu_available else "cpu")
|
86 |
model = model.to(device)
|
|
|
102 |
global word1
|
103 |
global word2
|
104 |
global word3
|
105 |
+
global model_base
|
106 |
|
107 |
# Load model from HuggingFace Hub
|
108 |
+
tokenizer = AutoTokenizer.from_pretrained(model_base)
|
109 |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
110 |
# token_ids = tokenizer.encode(sentences, return_tensors='pt')
|
111 |
# blank_id = tokenizer.mask_token_id
|
|
|
127 |
model_output = model(**encoded_input)
|
128 |
# output = model(encoded_input_topk)
|
129 |
|
130 |
+
unmasker = pipeline('fill-mask', model=model_base)
|
131 |
guesses = unmasker(sentences)
|
132 |
print(guesses)
|
133 |
|
|
|
151 |
|
152 |
|
153 |
def random_word():
|
154 |
+
global model_base
|
155 |
+
with open(model_base + '/vocab.txt', 'r') as file:
|
156 |
line = ""
|
157 |
content = file.readlines()
|
158 |
length = len(content)
|
159 |
while line == "":
|
160 |
+
rand_line = random.randrange(0, length)
|
161 |
|
162 |
if content[rand_line][0].isalpha() and content[rand_line][:-1] not in stops and content[rand_line][:-1] not in ROMAN_CONSTANTS:
|
163 |
line = content[rand_line]
|