tiny-scigpt-demo / model.py
Raymond
init demo
ea507ec
raw
history blame
6.89 kB
import torch
import torch.nn as nn
import collections
from torch.nn import functional as F
from torch.nn import RMSNorm
from tokenizer import vocab_size, encode, decode, tiktoken_encoding
# hyperparameters
batch_size = 64 # how many independent sequences will we process in parallel?
block_size = 128 # what is the maximum context length for predictions?
max_iters = 45 * 1000
eval_interval = 500
learning_rate = 1e-3
device = 'cuda' if torch.cuda.is_available() else 'cpu'
eval_iters = 500
n_embd = 128
n_head = 4
n_layer = 10
dropout = 0.02
TRAIN = True
PRETRAIN_PERCENTAGE = 0.6
REP_PENALTY_DECAY = 0.95
# ------------
class Head(nn.Module):
""" one head of self-attention """
def __init__(self, head_size):
super().__init__()
self.key = nn.Linear(n_embd, head_size, bias=False)
self.query = nn.Linear(n_embd, head_size, bias=False)
self.value = nn.Linear(n_embd, head_size, bias=False)
self.register_buffer('tril', torch.tril(torch.ones(block_size, block_size)))
self.dropout = nn.Dropout(dropout)
def forward(self, x):
B,T,C = x.shape
k = self.key(x) # (B,T,C)
q = self.query(x) # (B,T,C)
# compute attention scores ("affinities")
wei = q @ k.transpose(-2,-1) * C**-0.5 # (B, T, C) @ (B, C, T) -> (B, T, T)
wei = wei.masked_fill(self.tril[:T, :T] == 0, float('-inf')) # (B, T, T)
wei = F.softmax(wei, dim=-1) # (B, T, T)
wei = self.dropout(wei)
# perform the weighted aggregation of the values
v = self.value(x) # (B,T,C)
out = wei @ v # (B, T, T) @ (B, T, C) -> (B, T, C)
return out
class MultiHeadAttention(nn.Module):
""" multiple heads of self-attention in parallel """
def __init__(self, num_heads, head_size):
super().__init__()
self.heads = nn.ModuleList([Head(head_size) for _ in range(num_heads)])
self.proj = nn.Linear(n_embd, n_embd)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
out = torch.cat([h(x) for h in self.heads], dim=-1)
out = self.dropout(self.proj(out))
return out
class FeedFoward(nn.Module):
""" a simple linear layer followed by a non-linearity """
def __init__(self, n_embd):
super().__init__()
self.net = nn.Sequential(
nn.Linear(n_embd, 4 * n_embd),
SwiGLU(4 * n_embd, 4 * n_embd),
nn.Linear(4 * n_embd, n_embd),
nn.Dropout(dropout),
)
def forward(self, x):
return self.net(x)
# NOTE: I AM TESTING CODE FROM https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/activations.py
# be aware I do not know how this works entirely
class SwiGLU(nn.Module):
r"""
A [variant](https://arxiv.org/abs/2002.05202) of the gated linear unit activation function. It's similar to `GEGLU`
but uses SiLU / Swish instead of GeLU.
Parameters:
dim_in (`int`): The number of channels in the input.
dim_out (`int`): The number of channels in the output.
bias (`bool`, defaults to True): Whether to use a bias in the linear layer.
"""
def __init__(self, dim_in: int, dim_out: int, bias: bool = True):
super().__init__()
self.proj = nn.Linear(dim_in, dim_out * 2, bias=bias)
self.activation = nn.SiLU()
def forward(self, hidden_states):
hidden_states = self.proj(hidden_states)
hidden_states, gate = hidden_states.chunk(2, dim=-1)
return hidden_states * self.activation(gate)
class Block(nn.Module):
""" Transformer block: communication followed by computation """
def __init__(self, n_embd, n_head):
# n_embd: embedding dimension, n_head: the number of heads we'd like
super().__init__()
head_size = n_embd // n_head
self.sa = MultiHeadAttention(n_head, head_size)
self.ffwd = FeedFoward(n_embd)
self.ln1 = nn.RMSNorm(n_embd) # orig a LayerNorm
self.ln2 = nn.RMSNorm(n_embd) # orig a LayerNorm
def forward(self, x):
x = x + self.sa(self.ln1(x))
x = x + self.ffwd(self.ln2(x))
return x
# super simple bigram model
class TokenBasedLanguageModel(nn.Module):
def __init__(self):
super().__init__()
# each token directly reads off the logits for the next token from a lookup table
self.token_embedding_table = nn.Embedding(vocab_size, n_embd)
self.position_embedding_table = nn.Embedding(block_size, n_embd)
self.blocks = nn.Sequential(*[Block(n_embd, n_head=n_head) for _ in range(n_layer)])
self.ln_f = nn.RMSNorm(n_embd) # final orig layer norm
self.lm_head = nn.Linear(n_embd, vocab_size)
def forward(self, idx, targets=None):
B, T = idx.shape
# idx and targets are both (B,T) tensor of integers
tok_emb = self.token_embedding_table(idx) # (B,T,C)
pos_emb = self.position_embedding_table(torch.arange(T, device=device)) # (T,C)
x = tok_emb + pos_emb # (B,T,C)
x = self.blocks(x) # (B,T,C)
x = self.ln_f(x) # (B,T,C)
logits = self.lm_head(x) # (B,T,vocab_size)
if targets is None:
loss = None
else:
B, T, C = logits.shape
logits = logits.view(B*T, C)
targets = targets.view(B*T)
loss = F.cross_entropy(logits, targets)
return logits, loss
@torch.no_grad
def generate(self, idx, max_new_tokens, stream = False, stream_probs = False):
# idx is (B, T) array of indices in the current context
token_modifiers = collections.defaultdict(lambda x: 1)
for _ in range(max_new_tokens):
# crop idx to the last block_size tokens
idx_cond = idx[:, -block_size:]
# get the predictions
logits, loss = self(idx_cond)
# focus only on the last time step
logits = logits[:, -1, :] # becomes (B, C)
# apply softmax to get probabilities
probs = F.softmax(logits, dim=-1) # (B, C)
# apply rep penalty
#for token in token_modifiers:
# token_modifiers[token] *= REP_PENALTY_DECAY
# for batch in range(probs.shape[0]):
# probs[batch][token] *= (1 - REP_PENALTY_DECAY)
# print(probs.shape)
# sample from the distribution
idx_next = torch.multinomial(probs, num_samples=1) # (B, 1)
if stream:
if stream_probs:
yield [idx_next, probs[0].tolist()]
else:
yield idx_next
token_modifiers[idx_next] = REP_PENALTY_DECAY;
# append sampled index to the running sequence
idx = torch.cat((idx, idx_next), dim=1) # (B, T+1)
if not stream:
return idx