Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
import collections | |
from torch.nn import functional as F | |
from torch.nn import RMSNorm | |
from tokenizer import vocab_size, encode, decode, tiktoken_encoding | |
# hyperparameters | |
batch_size = 64 # how many independent sequences will we process in parallel? | |
block_size = 128 # what is the maximum context length for predictions? | |
max_iters = 45 * 1000 | |
eval_interval = 500 | |
learning_rate = 1e-3 | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
eval_iters = 500 | |
n_embd = 128 | |
n_head = 4 | |
n_layer = 10 | |
dropout = 0.02 | |
TRAIN = True | |
PRETRAIN_PERCENTAGE = 0.6 | |
REP_PENALTY_DECAY = 0.95 | |
# ------------ | |
class Head(nn.Module): | |
""" one head of self-attention """ | |
def __init__(self, head_size): | |
super().__init__() | |
self.key = nn.Linear(n_embd, head_size, bias=False) | |
self.query = nn.Linear(n_embd, head_size, bias=False) | |
self.value = nn.Linear(n_embd, head_size, bias=False) | |
self.register_buffer('tril', torch.tril(torch.ones(block_size, block_size))) | |
self.dropout = nn.Dropout(dropout) | |
def forward(self, x): | |
B,T,C = x.shape | |
k = self.key(x) # (B,T,C) | |
q = self.query(x) # (B,T,C) | |
# compute attention scores ("affinities") | |
wei = q @ k.transpose(-2,-1) * C**-0.5 # (B, T, C) @ (B, C, T) -> (B, T, T) | |
wei = wei.masked_fill(self.tril[:T, :T] == 0, float('-inf')) # (B, T, T) | |
wei = F.softmax(wei, dim=-1) # (B, T, T) | |
wei = self.dropout(wei) | |
# perform the weighted aggregation of the values | |
v = self.value(x) # (B,T,C) | |
out = wei @ v # (B, T, T) @ (B, T, C) -> (B, T, C) | |
return out | |
class MultiHeadAttention(nn.Module): | |
""" multiple heads of self-attention in parallel """ | |
def __init__(self, num_heads, head_size): | |
super().__init__() | |
self.heads = nn.ModuleList([Head(head_size) for _ in range(num_heads)]) | |
self.proj = nn.Linear(n_embd, n_embd) | |
self.dropout = nn.Dropout(dropout) | |
def forward(self, x): | |
out = torch.cat([h(x) for h in self.heads], dim=-1) | |
out = self.dropout(self.proj(out)) | |
return out | |
class FeedFoward(nn.Module): | |
""" a simple linear layer followed by a non-linearity """ | |
def __init__(self, n_embd): | |
super().__init__() | |
self.net = nn.Sequential( | |
nn.Linear(n_embd, 4 * n_embd), | |
SwiGLU(4 * n_embd, 4 * n_embd), | |
nn.Linear(4 * n_embd, n_embd), | |
nn.Dropout(dropout), | |
) | |
def forward(self, x): | |
return self.net(x) | |
# NOTE: I AM TESTING CODE FROM https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/activations.py | |
# be aware I do not know how this works entirely | |
class SwiGLU(nn.Module): | |
r""" | |
A [variant](https://arxiv.org/abs/2002.05202) of the gated linear unit activation function. It's similar to `GEGLU` | |
but uses SiLU / Swish instead of GeLU. | |
Parameters: | |
dim_in (`int`): The number of channels in the input. | |
dim_out (`int`): The number of channels in the output. | |
bias (`bool`, defaults to True): Whether to use a bias in the linear layer. | |
""" | |
def __init__(self, dim_in: int, dim_out: int, bias: bool = True): | |
super().__init__() | |
self.proj = nn.Linear(dim_in, dim_out * 2, bias=bias) | |
self.activation = nn.SiLU() | |
def forward(self, hidden_states): | |
hidden_states = self.proj(hidden_states) | |
hidden_states, gate = hidden_states.chunk(2, dim=-1) | |
return hidden_states * self.activation(gate) | |
class Block(nn.Module): | |
""" Transformer block: communication followed by computation """ | |
def __init__(self, n_embd, n_head): | |
# n_embd: embedding dimension, n_head: the number of heads we'd like | |
super().__init__() | |
head_size = n_embd // n_head | |
self.sa = MultiHeadAttention(n_head, head_size) | |
self.ffwd = FeedFoward(n_embd) | |
self.ln1 = nn.RMSNorm(n_embd) # orig a LayerNorm | |
self.ln2 = nn.RMSNorm(n_embd) # orig a LayerNorm | |
def forward(self, x): | |
x = x + self.sa(self.ln1(x)) | |
x = x + self.ffwd(self.ln2(x)) | |
return x | |
# super simple bigram model | |
class TokenBasedLanguageModel(nn.Module): | |
def __init__(self): | |
super().__init__() | |
# each token directly reads off the logits for the next token from a lookup table | |
self.token_embedding_table = nn.Embedding(vocab_size, n_embd) | |
self.position_embedding_table = nn.Embedding(block_size, n_embd) | |
self.blocks = nn.Sequential(*[Block(n_embd, n_head=n_head) for _ in range(n_layer)]) | |
self.ln_f = nn.RMSNorm(n_embd) # final orig layer norm | |
self.lm_head = nn.Linear(n_embd, vocab_size) | |
def forward(self, idx, targets=None): | |
B, T = idx.shape | |
# idx and targets are both (B,T) tensor of integers | |
tok_emb = self.token_embedding_table(idx) # (B,T,C) | |
pos_emb = self.position_embedding_table(torch.arange(T, device=device)) # (T,C) | |
x = tok_emb + pos_emb # (B,T,C) | |
x = self.blocks(x) # (B,T,C) | |
x = self.ln_f(x) # (B,T,C) | |
logits = self.lm_head(x) # (B,T,vocab_size) | |
if targets is None: | |
loss = None | |
else: | |
B, T, C = logits.shape | |
logits = logits.view(B*T, C) | |
targets = targets.view(B*T) | |
loss = F.cross_entropy(logits, targets) | |
return logits, loss | |
def generate(self, idx, max_new_tokens, stream = False, stream_probs = False): | |
# idx is (B, T) array of indices in the current context | |
token_modifiers = collections.defaultdict(lambda x: 1) | |
for _ in range(max_new_tokens): | |
# crop idx to the last block_size tokens | |
idx_cond = idx[:, -block_size:] | |
# get the predictions | |
logits, loss = self(idx_cond) | |
# focus only on the last time step | |
logits = logits[:, -1, :] # becomes (B, C) | |
# apply softmax to get probabilities | |
probs = F.softmax(logits, dim=-1) # (B, C) | |
# apply rep penalty | |
#for token in token_modifiers: | |
# token_modifiers[token] *= REP_PENALTY_DECAY | |
# for batch in range(probs.shape[0]): | |
# probs[batch][token] *= (1 - REP_PENALTY_DECAY) | |
# print(probs.shape) | |
# sample from the distribution | |
idx_next = torch.multinomial(probs, num_samples=1) # (B, 1) | |
if stream: | |
if stream_probs: | |
yield [idx_next, probs[0].tolist()] | |
else: | |
yield idx_next | |
token_modifiers[idx_next] = REP_PENALTY_DECAY; | |
# append sampled index to the running sequence | |
idx = torch.cat((idx, idx_next), dim=1) # (B, T+1) | |
if not stream: | |
return idx |