Spaces:
Sleeping
Sleeping
File size: 1,146 Bytes
c7a74ff 033d543 b56b900 c7a74ff 033d543 3255f31 99aedab 033d543 3255f31 033d543 3255f31 c7a74ff b56b900 033d543 3255f31 033d543 b56b900 033d543 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 |
import gradio as gr
from transformers import pipeline
from gradio.components import Textbox
# Load the sentiment analysis pipeline with DistilBERT
distilbert_pipeline = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english")
label_map = {"POSITIVE":"OTHER", "NEGATIVE":"SENSITIVE"}
def predict_sentiment(text):
"""
Predicts the sentiment of the input text using DistilBERT.
:param text: str, input text to analyze.
:return: str, predicted sentiment and confidence score.
"""
result = distilbert_pipeline(text)[0]
label = label_map[result['label']]
score = result['score']
return f"TAG: {label}, Confidence: {score:.2f}"
input1 = Textbox(lines=2, placeholder="Type your text here...")
# Create a Gradio interface
iface = gr.Interface(fn=predict_sentiment,
inputs=input1,
outputs="text",
title="Talk2Loop Sensitive statement tags",
description="This model predicts the sensitivity of the input text. Enter a sentence to see if it's sensitive or not.")
# Launch the interface
iface.launch()
|