import numpy as np import gradio as gr from sklearn.svm import LinearSVC from sklearn.datasets import load_iris from sklearn.pipeline import make_pipeline from sklearn.multiclass import OneVsRestClassifier from sklearn.model_selection import train_test_split from sklearn.preprocessing import label_binarize, StandardScaler import utils def app_fn(n_random_features: int, test_size: float, random_state_val: int): X, y = load_iris(return_X_y=True) # Add noisy features random_state = np.random.RandomState(random_state_val) n_samples, n_features = X.shape X = np.concatenate([X, random_state.randn(n_samples, n_random_features)], axis=1) # Solving Binary Problem X_train, X_test, y_train, y_test = train_test_split( X[y < 2], y[y < 2], test_size=test_size, random_state=random_state ) clf_bin = make_pipeline(StandardScaler(), LinearSVC(random_state=random_state)) clf_bin.fit(X_train, y_train) fig_bin = utils.plot_binary_pr_curve(clf_bin, X_test, y_test) # Solving Multi-Label Problem Y = label_binarize(y, classes=[0, 1, 2]) X_train_multi, X_test_multi, Y_train, Y_test = train_test_split( X, Y, test_size=test_size, random_state=random_state ) clf = OneVsRestClassifier( make_pipeline(StandardScaler(), LinearSVC(random_state=random_state)) ) clf.fit(X_train_multi, Y_train) fig_multi = utils.plot_multi_label_pr_curve(clf, X_test_multi, Y_test) return fig_bin, fig_multi title = "Precision-Recall Curves" with gr.Blocks(title=title) as demo: gr.Markdown(f"# {title}") gr.Markdown( """ This demo shows the precision-recall curves on the Iris dataset \ using a Linear SVM classifier + StandardScaler. \ Noise is added to the dataset to make the problem more challenging. \ The dataset is split into train and test sets. \ The model is trained on the train set and evaluated on the test set. \ Two separate problems are solved: - Binary classification: class 0 vs class 1 - Multi-label classification: class 0 vs class 1 vs class 2 See the scikit-learn example [here](https://scikit-learn.org/stable/auto_examples/model_selection/plot_precision_recall.html#sphx-glr-auto-examples-model-selection-plot-precision-recall-py). """ ) with gr.Row(): n_random_features = gr.inputs.Slider(0, 1000, 50, 800,label="Number of Random Features") test_size = gr.inputs.Slider(0.1, 0.9, 0.01, 0.5, label="Test Size") random_state_val = gr.inputs.Slider(0, 100, 5, 0,label="Random State") with gr.Row(): fig_bin = gr.Plot(label="Binary PR Curve") fig_multi = gr.Plot(label="Multi-Label PR Curve") n_random_features.change(fn=app_fn, inputs=[n_random_features, test_size, random_state_val], outputs=[fig_bin, fig_multi]) test_size.change(fn=app_fn, inputs=[n_random_features, test_size, random_state_val], outputs=[fig_bin, fig_multi]) random_state_val.change(fn=app_fn, inputs=[n_random_features, test_size, random_state_val], outputs=[fig_bin, fig_multi]) demo.load(fn=app_fn, inputs=[n_random_features, test_size, random_state_val], outputs=[fig_bin, fig_multi]) demo.launch()