merve HF staff commited on
Commit
7e2120c
1 Parent(s): c4b39af

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -4
app.py CHANGED
@@ -49,17 +49,17 @@ with gr.Blocks(title=title) as demo:
49
  gr.Markdown(f"# {title}")
50
  gr.Markdown(
51
  """
52
- ### This demo shows the precision-recall curves on the Iris dataset \
53
  using a Linear SVM classifier + StandardScaler. \
54
  Noise is added to the dataset to make the problem more challenging. \
55
  The dataset is split into train and test sets. \
56
  The model is trained on the train set and evaluated on the test set. \
57
  Two separate problems are solved:
58
 
59
- ### Binary classification: class 0 vs class 1
60
- ### Multi-label classification: class 0 vs class 1 vs class 2
61
 
62
- [Original Example](https://scikit-learn.org/stable/auto_examples/model_selection/plot_precision_recall.html#sphx-glr-auto-examples-model-selection-plot-precision-recall-py)
63
  """
64
  )
65
 
 
49
  gr.Markdown(f"# {title}")
50
  gr.Markdown(
51
  """
52
+ This demo shows the precision-recall curves on the Iris dataset \
53
  using a Linear SVM classifier + StandardScaler. \
54
  Noise is added to the dataset to make the problem more challenging. \
55
  The dataset is split into train and test sets. \
56
  The model is trained on the train set and evaluated on the test set. \
57
  Two separate problems are solved:
58
 
59
+ - Binary classification: class 0 vs class 1
60
+ - Multi-label classification: class 0 vs class 1 vs class 2
61
 
62
+ See the scikit-learn example [here](https://scikit-learn.org/stable/auto_examples/model_selection/plot_precision_recall.html#sphx-glr-auto-examples-model-selection-plot-precision-recall-py).
63
  """
64
  )
65