Spaces:
Sleeping
Sleeping
import numpy as np | |
import plotly.graph_objects as go | |
from sklearn.metrics import PrecisionRecallDisplay, precision_recall_curve, average_precision_score | |
def plot_multi_label_pr_curve(clf, X_test: np.ndarray, Y_test: np.ndarray): | |
n_classes = Y_test.shape[1] | |
y_score = clf.decision_function(X_test) | |
# For each class | |
precision = dict() | |
recall = dict() | |
average_precision = dict() | |
for i in range(n_classes): | |
precision[i], recall[i], _ = precision_recall_curve(Y_test[:, i], y_score[:, i]) | |
average_precision[i] = average_precision_score(Y_test[:, i], y_score[:, i]) | |
# A "micro-average": quantifying score on all classes jointly | |
precision["micro"], recall["micro"], _ = precision_recall_curve( | |
Y_test.ravel(), y_score.ravel() | |
) | |
average_precision["micro"] = average_precision_score(Y_test, y_score, average="micro") | |
# Plotting | |
fig = go.Figure() | |
# Plottin Precision-Recall Curves for each class | |
colors = ["navy", "turquoise", "darkorange", "gold"] | |
keys = list(precision.keys()) | |
for color, key in zip(colors, keys): | |
if key=="micro": | |
name = f"Micro-average(AP={average_precision[key]:.2f})" | |
else: | |
name = f"Class {key} (AP={average_precision[key]:.2f})" | |
fig.add_trace( | |
go.Scatter( | |
x=recall[key], | |
y=precision[key], | |
mode="lines", | |
name=name, | |
line=dict(color=color), | |
showlegend=True, | |
line_shape="hv" | |
) | |
) | |
# Creating Iso-F1 Curves | |
f_scores = np.linspace(0.2, 0.8, num=4) | |
for idx, f_score in enumerate(f_scores): | |
if idx==0: | |
name = "Iso-F1 Curves" | |
showlegend = True | |
else: | |
name = "" | |
showlegend = False | |
x = np.linspace(0.01, 1, 1001) | |
y = f_score * x / (2 * x - f_score) | |
mask = y >= 0 | |
fig.add_trace(go.Scatter(x=x[mask], y=y[mask], mode='lines', line_color='gray', name=name, showlegend=showlegend)) | |
fig.add_annotation(x=0.9, y=y[900] + 0.02, text=f"<b>f1={f_score:0.1f}</b>", showarrow=False, font=dict(size=15)) | |
fig.update_yaxes(range=[0, 1.05]) | |
fig.update_layout( | |
title='Extension of Precision-Recall Curve to Multi-Class', | |
xaxis_title='Recall', | |
yaxis_title='Precision' | |
) | |
return fig | |
def plot_binary_pr_curve(clf, X_test: np.ndarray, y_test:np.array): | |
# make predictions on the test data | |
y_pred = clf.decision_function(X_test) | |
# calculate precision and recall for different probability thresholds | |
precision, recall, _ = precision_recall_curve(y_test, y_pred) | |
# calculate the average precision | |
ap = average_precision_score(y_test, y_pred) | |
# Plotting | |
fig = go.Figure() | |
fig.add_trace( | |
go.Scatter( | |
x=recall, | |
y=precision, | |
mode="lines", | |
name=f"LinearSVC (AP={ap:.2f})", | |
line=dict(color="blue"), | |
showlegend=True, | |
line_shape="hv" | |
) | |
) | |
# Make x-range slightly larger than max value | |
fig.update_xaxes(range=[-0.05, 1.05]) | |
# Make Legend text size larger | |
fig.update_layout( | |
title='2-Class Precision-Recall Curve', | |
xaxis_title='Recall (Positive label: 1)', | |
yaxis_title='Precision (Positive label: 1)', | |
legend=dict( | |
x=0.009, | |
y=0.05, | |
font=dict( | |
size=12, | |
), | |
) | |
) | |
return fig | |