Spaces:
Runtime error
Runtime error
File size: 15,653 Bytes
5f735a0 f723f88 5f735a0 b118f26 5f735a0 b118f26 5f735a0 b118f26 5f735a0 035311e 5f735a0 57cd4fe 5f735a0 b118f26 5f735a0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 |
import os
# os.environ["CUDA_VISIBLE_DEVICES"] = "0" # 指定要使用的GPU设备编号
from transformers import pipeline
import argparse
import openai
import tiktoken
import torch
from scipy.spatial.distance import cosine
from transformers import AutoModel, AutoTokenizer
from argparse import Namespace
from langchain.chat_models import ChatOpenAI
import gradio as gr
import random
import time
from langchain.prompts.chat import (
ChatPromptTemplate,
SystemMessagePromptTemplate,
AIMessagePromptTemplate,
HumanMessagePromptTemplate,
)
from langchain.schema import (
AIMessage,
HumanMessage,
SystemMessage
)
from text import Text
def download_models():
# Import our models. The package will take care of downloading the models automatically
model_args = Namespace(do_mlm=None, pooler_type="cls", temp=0.05, mlp_only_train=False,
init_embeddings_model=None)
model = AutoModel.from_pretrained("silk-road/luotuo-bert", trust_remote_code=True, model_args=model_args)
return model
# OPENAI_API_KEY = os.environ.get("OPENAI_API_KEY2")
key_1 = "sk-dsal7Uv2ThjeagImllYC"
key_2 = "T3BlbkFJesI7mCOMgW3jC9PnhHN1"
openai.api_key = key_1+key_2 # 在这里输入你的OpenAI API Token
os.environ["OPENAI_API_KEY"] = openai.api_key
folder_name = "Suzumiya"
current_directory = os.getcwd()
new_directory = os.path.join(current_directory, folder_name)
pkl_path = './pkl/texts.pkl'
text_image_pkl_path='./pkl/text_image.pkl'
dict_path = "characters/haruhi/text_image_dict.txt"
dict_text_pkl_path = './pkl/dict_text.pkl'
image_path = "characters/haruhi/images"
model = download_models()
text = Text("characters/haruhi/texts", text_image_pkl_path=text_image_pkl_path,
dict_text_pkl_path=dict_text_pkl_path, model=model, num_steps=50, pkl_path=pkl_path,
dict_path=dict_path, image_path=image_path)
if not os.path.exists(new_directory):
os.makedirs(new_directory)
print(f"文件夹 '{folder_name}' 创建成功!")
else:
print(f"文件夹 '{folder_name}' 已经存在。")
enc = tiktoken.get_encoding("cl100k_base")
class Run:
def __init__(self, **params):
"""
* 命令行参数的接入
* 台词folder,记录台词
* system prompt存成txt文件,支持切换
* 支持设定max_len_story 和max_len_history
* 支持设定save_path
* 实现一个colab脚本,可以clone转换后的项目并运行,方便其他用户体验
"""
self.folder = params['folder']
# self.system_prompt = params['system_prompt']
with open(params['system_prompt'], 'r') as f:
self.system_prompt = f.read()
self.max_len_story = params['max_len_story']
self.max_len_history = params['max_len_history']
self.save_path = params['save_path']
self.titles, self.title_to_text = self.read_prompt_data()
self.embeddings, self.embed_to_title = self.title_text_embedding(self.titles, self.title_to_text)
# self.embeddings, self.embed_to_title = [], []
# 一个封装 OpenAI 接口的函数,参数为 Prompt,返回对应结果
def get_completion_from_messages(self, messages, model="gpt-3.5-turbo", temperature=0):
response = openai.ChatCompletion.create(
model=model,
messages=messages,
temperature=temperature, # 控制模型输出的随机程度
)
# print(str(response.choices[0].message))
return response.choices[0].message["content"]
def read_prompt_data(self):
"""
read prompt-data for in-context-learning
"""
titles = []
title_to_text = {}
for file in os.listdir(self.folder):
if file.endswith('.txt'):
title_name = file[:-4]
titles.append(title_name)
with open(os.path.join(self.folder, file), 'r') as f:
title_to_text[title_name] = f.read()
return titles, title_to_text
def get_embedding(self, text):
tokenizer = AutoTokenizer.from_pretrained("silk-road/luotuo-bert")
model = download_models()
if len(text) > 512:
text = text[:512]
texts = [text]
# Tokenize the text
inputs = tokenizer(texts, padding=True, truncation=False, return_tensors="pt")
# Extract the embeddings
# Get the embeddings
with torch.no_grad():
embeddings = model(**inputs, output_hidden_states=True, return_dict=True, sent_emb=True).pooler_output
return embeddings[0]
def title_text_embedding(self, titles, title_to_text):
"""titles-text-embeddings"""
embeddings = []
embed_to_title = []
for title in titles:
text = title_to_text[title]
# divide text with \n\n
divided_texts = text.split('\n\n')
for divided_text in divided_texts:
embed = self.get_embedding(divided_text)
embeddings.append(embed)
embed_to_title.append(title)
return embeddings, embed_to_title
def get_cosine_similarity(self, embed1, embed2):
return torch.nn.functional.cosine_similarity(embed1, embed2, dim=0)
def retrieve_title(self, query_embed, embeddings, embed_to_title, k):
# compute cosine similarity between query_embed and embeddings
cosine_similarities = []
for embed in embeddings:
cosine_similarities.append(self.get_cosine_similarity(query_embed, embed))
# sort cosine similarity
sorted_cosine_similarities = sorted(cosine_similarities, reverse=True)
top_k_index = []
top_k_title = []
for i in range(len(sorted_cosine_similarities)):
current_title = embed_to_title[cosine_similarities.index(sorted_cosine_similarities[i])]
if current_title not in top_k_title:
top_k_title.append(current_title)
top_k_index.append(cosine_similarities.index(sorted_cosine_similarities[i]))
if len(top_k_title) == k:
break
return top_k_title
def organize_story_with_maxlen(self, selected_sample):
maxlen = self.max_len_story
# title_to_text, _ = self.read_prompt_data()
story = "凉宫春日的经典桥段如下:\n"
count = 0
final_selected = []
print(selected_sample)
for sample_topic in selected_sample:
# find sample_answer in dictionary
sample_story = self.title_to_text[sample_topic]
sample_len = len(enc.encode(sample_story))
# print(sample_topic, ' ' , sample_len)
if sample_len + count > maxlen:
break
story += sample_story
story += '\n'
count += sample_len
final_selected.append(sample_topic)
return story, final_selected
def organize_message(self, story, history_chat, history_response, new_query):
messages = [{'role': 'system', 'content': self.system_prompt}, {'role': 'user', 'content': story}]
n = len(history_chat)
if n != len(history_response):
print('warning, unmatched history_char length, clean and start new chat')
# clean all
history_chat = []
history_response = []
n = 0
for i in range(n):
messages.append({'role': 'user', 'content': history_chat[i]})
messages.append({'role': 'user', 'content': history_response[i]})
messages.append({'role': 'user', 'content': new_query})
return messages
def keep_tail(self, history_chat, history_response):
max_len = self.max_len_history
n = len(history_chat)
if n == 0:
return [], []
if n != len(history_response):
print('warning, unmatched history_char length, clean and start new chat')
return [], []
token_len = []
for i in range(n):
chat_len = len(enc.encode(history_chat[i]))
res_len = len(enc.encode(history_response[i]))
token_len.append(chat_len + res_len)
keep_k = 1
count = token_len[n - 1]
for i in range(1, n):
count += token_len[n - 1 - i]
if count > max_len:
break
keep_k += 1
return history_chat[-keep_k:], history_response[-keep_k:]
def organize_message_langchain(self, story, history_chat, history_response, new_query):
# messages = [{'role':'system', 'content':SYSTEM_PROMPT}, {'role':'user', 'content':story}]
messages = [
SystemMessage(content=self.system_prompt),
HumanMessage(content=story)
]
n = len(history_chat)
if n != len(history_response):
print('warning, unmatched history_char length, clean and start new chat')
# clean all
history_chat = []
history_response = []
n = 0
for i in range(n):
messages.append(HumanMessage(content=history_chat[i]))
messages.append(AIMessage(content=history_response[i]))
# messages.append( {'role':'user', 'content':new_query })
messages.append(HumanMessage(content=new_query))
return messages
def get_response(self, user_message, chat_history_tuple):
history_chat = []
history_response = []
if len(chat_history_tuple) > 0:
for cha, res in chat_history_tuple:
history_chat.append(cha)
history_response.append(res)
history_chat, history_response = self.keep_tail(history_chat, history_response)
print('history done')
new_query = user_message
query_embed = self.get_embedding(new_query)
# print("1")
# embeddings, embed_to_title = self.title_text_embedding(self.titles, self.title_to_text)
print("2")
selected_sample = self.retrieve_title(query_embed, self.embeddings, self.embed_to_title, 7)
print("3")
story, selected_sample = self.organize_story_with_maxlen(selected_sample)
## TODO: visualize seletected sample later
print('当前辅助sample:', selected_sample)
messages = self.organize_message_langchain(story, history_chat, history_response, new_query)
chat = ChatOpenAI(temperature=0)
return_msg = chat(messages)
response = return_msg.content
return response
def save_response(self, chat_history_tuple):
with open(f"{self.save_path}/conversation_{time.time()}.txt", "w") as file:
for cha, res in chat_history_tuple:
file.write(cha)
file.write("\n---\n")
file.write(res)
file.write("\n---\n")
def create_gradio(self):
# from google.colab import drive
# drive.mount(drive_path)
with gr.Blocks() as demo:
gr.Markdown(
"""
## Chat凉宫春日 ChatHaruhi
项目地址 [https://github.com/LC1332/Chat-Haruhi-Suzumiya](https:// github.com/LC1332/Chat-Haruhi-Suzumiya)
骆驼项目地址 [https://github.com/LC1332/Luotuo-Chinese-LLM](https:// github.com/LC1332/Luotuo-Chinese-LLM)
此版本为图文版本,完整功能(+语音)的demo见项目
角色名建议输入 阿虚 或者影视剧中有的人物。或者也可以是新学生或者老师。
"""
)
image_input = gr.Textbox(visible=False)
# japanese_input = gr.Textbox(visible=False)
with gr.Row():
chatbot = gr.Chatbot()
image_output = gr.Image()
role_name = gr.Textbox(label="角色名", placeholde="输入角色名")
msg = gr.Textbox(label="输入")
with gr.Row():
clear = gr.Button("Clear")
sub = gr.Button("Submit")
image_button = gr.Button("给我一个图")
# japanese_output = gr.Textbox(interactive=False)
def respond(role_name, user_message, chat_history):
input_message = role_name + ':「' + user_message + '」'
bot_message = self.get_response(input_message, chat_history)
chat_history.append((input_message, bot_message))
self.save_response(chat_history)
# time.sleep(1)
# jp_text = pipe(f'<-zh2ja-> {bot_message}')[0]['translation_text']
return "" , chat_history, bot_message
clear.click(lambda: None, None, chatbot, queue=False)
msg.submit(respond, [role_name, msg, chatbot], [msg, chatbot, image_input])
sub.click(fn=respond, inputs=[role_name, msg, chatbot], outputs=[msg, chatbot, image_input])
# with gr.Tab("text_to_text"):
# text_input = gr.Textbox()
# text_output = gr.Textbox()
# text_button = gr.Button('begin')
# text_button.click(text.text_to_text, inputs=text_input, outputs=text_output)
# with gr.Tab("text_to_iamge"):
# with gr.Row():
# image_input = gr.Textbox()
# image_output = gr.Image()
# image_button = gr.Button("给我一个图")
image_button.click(text.text_to_image, inputs=image_input, outputs=image_output)
demo.launch(debug=True)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="-----[Chat凉宫春日]-----")
parser.add_argument("--folder", default="characters/haruhi/texts", help="text folder")
parser.add_argument("--system_prompt", default="characters/haruhi/system_prompt.txt", help="store system_prompt")
parser.add_argument("--max_len_story", default=1500, type=int)
parser.add_argument("--max_len_history", default=1200, type=int)
# parser.add_argument("--save_path", default="/content/drive/MyDrive/GPTData/Haruhi-Lulu/")
parser.add_argument("--save_path", default=os.getcwd()+"/Suzumiya")
options = parser.parse_args()
params = {
"folder": options.folder,
"system_prompt": options.system_prompt,
"max_len_story": options.max_len_story,
"max_len_history": options.max_len_history,
"save_path": options.save_path
}
# pipe = pipeline(model="engmatic-earth/mt5-zh-ja-en-trimmed-fine-tuned-v1", device=0,max_length=120)
run = Run(**params)
run.create_gradio()
# history_chat = []
# history_response = []
# chat_timer = 5
# new_query = '鲁鲁:你好我是新同学鲁鲁'
# query_embed = run.get_embedding(new_query)
# titles, title_to_text = run.read_prompt_data()
# embeddings, embed_to_title = run.title_text_embedding(titles, title_to_text)
# selected_sample = run.retrieve_title(query_embed, embeddings, embed_to_title, 7)
# print('限制长度之前:', selected_sample)
# story, selected_sample = run.organize_story_with_maxlen(selected_sample)
# print('当前辅助sample:', selected_sample)
# messages = run.organize_message(story, history_chat, history_response, new_query)
# response = run.get_completion_from_messages(messages)
# print(response)
# history_chat.append(new_query)
# history_response.append(response)
# history_chat, history_response = run.keep_tail(history_chat, history_response)
# print(history_chat, history_response)
|