Spaces:
Runtime error
Runtime error
import torch | |
import random | |
import numpy as np | |
from PIL import Image | |
from collections import defaultdict | |
import os | |
# Mentioning detectron2 as a dependency directly in requirements.txt tries to install detectron2 before torch and results in an error even if torch is listed as a dependency before detectron2. | |
# Hence, installing detectron2 this way when using Gradio HF spaces. | |
os.system('pip install git+https://github.com/facebookresearch/detectron2.git') | |
from detectron2.data import MetadataCatalog | |
from detectron2.utils.visualizer import ColorMode, Visualizer | |
from color_palette import ade_palette | |
from transformers import Mask2FormerImageProcessor, Mask2FormerForUniversalSegmentation | |
def load_model_and_processor(model_ckpt: str): | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model = Mask2FormerForUniversalSegmentation.from_pretrained(model_ckpt).to(torch.device(device)) | |
model.eval() | |
image_preprocessor = Mask2FormerImageProcessor.from_pretrained(model_ckpt) | |
return model, image_preprocessor | |
def load_default_ckpt(segmentation_task: str): | |
if segmentation_task == "semantic": | |
default_ckpt = "facebook/mask2former-swin-tiny-ade-semantic" | |
elif segmentation_task == "instance": | |
default_ckpt = "facebook/mask2former-swin-small-coco-instance" | |
else: | |
default_ckpt = "facebook/mask2former-swin-tiny-coco-panoptic" | |
return default_ckpt | |
def draw_panoptic_segmentation(predicted_segmentation_map, seg_info, image): | |
metadata = MetadataCatalog.get("coco_2017_val_panoptic") | |
for res in seg_info: | |
res['category_id'] = res.pop('label_id') | |
pred_class = res['category_id'] | |
isthing = pred_class in metadata.thing_dataset_id_to_contiguous_id.values() | |
res['isthing'] = bool(isthing) | |
visualizer = Visualizer(np.array(image)[:, :, ::-1], metadata=metadata, instance_mode=ColorMode.IMAGE) | |
out = visualizer.draw_panoptic_seg_predictions( | |
predicted_segmentation_map.cpu(), seg_info, alpha=0.5 | |
) | |
output_img = Image.fromarray(out.get_image()) | |
return output_img | |
def draw_semantic_segmentation(segmentation_map, image, palette): | |
color_segmentation_map = np.zeros((segmentation_map.shape[0], segmentation_map.shape[1], 3), dtype=np.uint8) # height, width, 3 | |
for label, color in enumerate(palette): | |
color_segmentation_map[segmentation_map - 1 == label, :] = color | |
# Convert to BGR | |
ground_truth_color_seg = color_segmentation_map[..., ::-1] | |
img = np.array(image) * 0.5 + ground_truth_color_seg * 0.5 | |
img = img.astype(np.uint8) | |
return img | |
def visualize_instance_seg_mask(mask, input_image): | |
color_segmentation_map = np.zeros((mask.shape[0], mask.shape[1], 3), dtype=np.uint8) | |
labels = np.unique(mask) | |
label2color = {int(label): (random.randint(0, 1), random.randint(0, 255), random.randint(0, 255)) for label in labels} | |
for label, color in label2color.items(): | |
color_segmentation_map[mask - 1 == label, :] = color | |
ground_truth_color_seg = color_segmentation_map[..., ::-1] | |
img = np.array(input_image) * 0.5 + ground_truth_color_seg * 0.5 | |
img = img.astype(np.uint8) | |
return img | |
def predict_masks(input_img_path: str, segmentation_task: str): | |
#load model and image processor | |
default_ckpt = load_default_ckpt(segmentation_task) | |
model, image_processor = load_model_and_processor(default_ckpt) | |
## pass input image through image processor | |
image = Image.open(input_img_path) | |
inputs = image_processor(images=image, return_tensors="pt") | |
## pass inputs to model for prediction | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
# pass outputs to processor for postprocessing | |
if segmentation_task == "semantic": | |
result = image_processor.post_process_semantic_segmentation(outputs, target_sizes=[image.size[::-1]])[0] | |
predicted_segmentation_map = result.cpu().numpy() | |
palette = ade_palette() | |
output_result = draw_semantic_segmentation(predicted_segmentation_map, image, palette) | |
output_heading = "Semantic Segmentation Output" | |
elif segmentation_task == "instance": | |
result = image_processor.post_process_instance_segmentation(outputs, target_sizes=[image.size[::-1]])[0] | |
predicted_instance_map = result["segmentation"].cpu().detach().numpy() | |
output_result = visualize_instance_seg_mask(predicted_instance_map, image) | |
output_heading = "Instance Segmentation Output" | |
else: | |
result = image_processor.post_process_panoptic_segmentation(outputs, target_sizes=[image.size[::-1]])[0] | |
predicted_segmentation_map = result["segmentation"] | |
seg_info = result['segments_info'] | |
output_result = draw_panoptic_segmentation(predicted_segmentation_map, seg_info, image) | |
output_heading = "Panoptic Segmentation Output" | |
return output_result, output_heading | |