shivanis14
commited on
Commit
•
89afe89
1
Parent(s):
d4dce4f
Add application file
Browse files- app.py +129 -0
- orb_motion_detection.py +310 -0
app.py
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import io
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
#from decord import cpu, VideoReader, bridge
|
6 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
7 |
+
from orb_motion_detection import detect_fast_motion
|
8 |
+
import time, os
|
9 |
+
|
10 |
+
def process_video(video, start_time, end_time, quant=8):
|
11 |
+
start = time.time()
|
12 |
+
|
13 |
+
output_dir = "motion_detection_results"
|
14 |
+
os.system(f"rm -rf {output_dir}")
|
15 |
+
os.system(f"mkdir {output_dir}")
|
16 |
+
|
17 |
+
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
18 |
+
TORCH_TYPE = torch.bfloat16 if torch.cuda.is_available() and torch.cuda.get_device_capability()[0] >= 8 else torch.float16
|
19 |
+
|
20 |
+
MODEL_PATH = "THUDM/cogvlm2-video-llama3-base"
|
21 |
+
|
22 |
+
if 'int4' in MODEL_PATH:
|
23 |
+
quant = 4
|
24 |
+
|
25 |
+
strategy = 'base' if 'cogvlm2-video-llama3-base' in MODEL_PATH else 'chat'
|
26 |
+
print(f"Using {strategy} model")
|
27 |
+
|
28 |
+
timestamps, fast_frames = detect_fast_motion(video.name, output_dir, end_time, start_time, motion_threshold=1.5)
|
29 |
+
|
30 |
+
history = []
|
31 |
+
if len(fast_frames) > 0:
|
32 |
+
video_data = np.array(fast_frames[0:min(48, len(fast_frames))]) # Shape: (num_frames, height, width, channels)
|
33 |
+
video_data = np.transpose(video_data, (3, 0, 1, 2)) # RGB channels first
|
34 |
+
video_tensor = torch.tensor(video_data) # Convert to tensor
|
35 |
+
|
36 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, trust_remote_code=True)
|
37 |
+
|
38 |
+
if quant == 4:
|
39 |
+
model = AutoModelForCausalLM.from_pretrained(
|
40 |
+
MODEL_PATH,
|
41 |
+
torch_dtype=TORCH_TYPE,
|
42 |
+
trust_remote_code=True,
|
43 |
+
quantization_config=BitsAndBytesConfig(
|
44 |
+
load_in_4bit=True,
|
45 |
+
bnb_4bit_compute_dtype=TORCH_TYPE,
|
46 |
+
),
|
47 |
+
low_cpu_mem_usage=True
|
48 |
+
).eval()
|
49 |
+
elif quant == 8:
|
50 |
+
model = AutoModelForCausalLM.from_pretrained(
|
51 |
+
MODEL_PATH,
|
52 |
+
torch_dtype=TORCH_TYPE,
|
53 |
+
trust_remote_code=True,
|
54 |
+
quantization_config=BitsAndBytesConfig(
|
55 |
+
load_in_8bit=True,
|
56 |
+
bnb_4bit_compute_dtype=TORCH_TYPE,
|
57 |
+
),
|
58 |
+
low_cpu_mem_usage=True
|
59 |
+
).eval()
|
60 |
+
else:
|
61 |
+
model = AutoModelForCausalLM.from_pretrained(
|
62 |
+
MODEL_PATH,
|
63 |
+
torch_dtype=TORCH_TYPE,
|
64 |
+
trust_remote_code=True
|
65 |
+
).eval().to(DEVICE)
|
66 |
+
|
67 |
+
query = "Describe the actions in the video frames focusing on physical abuse, violence, or someone falling down."
|
68 |
+
print(f"Query: {query}")
|
69 |
+
|
70 |
+
inputs = model.build_conversation_input_ids(
|
71 |
+
tokenizer=tokenizer,
|
72 |
+
query=query,
|
73 |
+
images=[video_tensor],
|
74 |
+
history=history,
|
75 |
+
template_version=strategy
|
76 |
+
)
|
77 |
+
|
78 |
+
inputs = {
|
79 |
+
'input_ids': inputs['input_ids'].unsqueeze(0).to(DEVICE),
|
80 |
+
'token_type_ids': inputs['token_type_ids'].unsqueeze(0).to(DEVICE),
|
81 |
+
'attention_mask': inputs['attention_mask'].unsqueeze(0).to(DEVICE),
|
82 |
+
'images': [[inputs['images'][0].to('cuda').to(TORCH_TYPE)]],
|
83 |
+
}
|
84 |
+
|
85 |
+
gen_kwargs = {
|
86 |
+
"max_new_tokens": 2048,
|
87 |
+
"pad_token_id": 128002,
|
88 |
+
"top_k": 1,
|
89 |
+
"do_sample": True,
|
90 |
+
"top_p": 0.1,
|
91 |
+
"temperature": 0.1,
|
92 |
+
}
|
93 |
+
|
94 |
+
with torch.no_grad():
|
95 |
+
outputs = model.generate(**inputs, **gen_kwargs)
|
96 |
+
outputs = outputs[:, inputs['input_ids'].shape[1]:]
|
97 |
+
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
98 |
+
print("\nCogVLM2-Video:", response)
|
99 |
+
history.append((query, response))
|
100 |
+
|
101 |
+
result = f"Response: {response}"
|
102 |
+
else:
|
103 |
+
result = "No aggressive behaviour found. Nobody falling down."
|
104 |
+
|
105 |
+
end = time.time()
|
106 |
+
execution_time = f"Execution time for {video.name}: {end - start} seconds. Duration of the video was {end_time - start_time} seconds."
|
107 |
+
|
108 |
+
return result
|
109 |
+
|
110 |
+
|
111 |
+
# Create Gradio Interface
|
112 |
+
def gradio_interface():
|
113 |
+
video_input = gr.File(label="Upload video file (.mp4)", type="filepath")
|
114 |
+
start_time = gr.Number(value=0.0, label="Start time (seconds)")
|
115 |
+
end_time = gr.Number(value=15.0, label="End time (seconds)")
|
116 |
+
|
117 |
+
interface = gr.Interface(
|
118 |
+
fn=process_video,
|
119 |
+
inputs=[video_input, start_time, end_time],
|
120 |
+
outputs="text",
|
121 |
+
title="Senior Safety Monitoring System",
|
122 |
+
description="Upload a video and specify the time range for analysis. The model will detect fast motion and describe actions such as physical abuse or someone falling down."
|
123 |
+
)
|
124 |
+
|
125 |
+
interface.launch(share=True)
|
126 |
+
|
127 |
+
|
128 |
+
if __name__ == "__main__":
|
129 |
+
gradio_interface()
|
orb_motion_detection.py
ADDED
@@ -0,0 +1,310 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2, os, time, math
|
2 |
+
import numpy as np
|
3 |
+
from skimage.metrics import structural_similarity as ssim
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
|
6 |
+
def compute_optical_flow(prev_gray, curr_gray):
|
7 |
+
flow = cv2.calcOpticalFlowFarneback(prev_gray, curr_gray, None, 0.5, 3, 15, 3, 5, 1.2, 0)
|
8 |
+
magnitude, _ = cv2.cartToPolar(flow[..., 0], flow[..., 1])
|
9 |
+
#print(f"DEBUG : max and min values are {np.max(magnitude)} {np.min(magnitude)}")
|
10 |
+
return np.max(magnitude)
|
11 |
+
|
12 |
+
def compute_orb_distance(prev_frame, curr_frame, match_threshold = 40):
|
13 |
+
# Initialize ORB detector
|
14 |
+
orb = cv2.ORB_create()
|
15 |
+
|
16 |
+
# Find the keypoints and descriptors with ORB
|
17 |
+
kp1, des1 = orb.detectAndCompute(prev_frame, None)
|
18 |
+
kp2, des2 = orb.detectAndCompute(curr_frame, None)
|
19 |
+
|
20 |
+
# Create BFMatcher object
|
21 |
+
bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)
|
22 |
+
|
23 |
+
# Match descriptors
|
24 |
+
orig_matches = bf.match(des1, des2)
|
25 |
+
|
26 |
+
matches = [match for match in orig_matches if match.distance < match_threshold]
|
27 |
+
|
28 |
+
# Sort them in the order of their distance (descriptor similarity)
|
29 |
+
matches = sorted(matches, key=lambda x: x.distance)
|
30 |
+
|
31 |
+
# Calculate average descriptor distance of top 10% matches
|
32 |
+
num_matches = len(matches) # Use 10% of matches
|
33 |
+
if num_matches == 0:
|
34 |
+
return 0
|
35 |
+
|
36 |
+
max_descriptor_distance = max(match.distance for match in matches[:num_matches])
|
37 |
+
|
38 |
+
# Calculate Euclidean distances (physical movement) for top matches
|
39 |
+
euclidean_distances = []
|
40 |
+
for match in matches[:num_matches]:
|
41 |
+
# Get keypoint coordinates from both frames
|
42 |
+
pt1 = np.array(kp1[match.queryIdx].pt) # Coordinates in prev_frame
|
43 |
+
pt2 = np.array(kp2[match.trainIdx].pt) # Coordinates in curr_frame
|
44 |
+
|
45 |
+
# Compute Euclidean distance between matched keypoints
|
46 |
+
euclidean_distance = np.sqrt((pt1[0] - pt2[0])**2 + (pt1[1] - pt2[1])**2)
|
47 |
+
#print(f"DEBUG!! euclidean_distance is {euclidean_distance} between {pt1} and {pt2}")
|
48 |
+
euclidean_distances.append(euclidean_distance)
|
49 |
+
|
50 |
+
# Average Euclidean distance (keypoint movement)
|
51 |
+
max_movement_distance = np.max(euclidean_distances)
|
52 |
+
|
53 |
+
# Normalize max descriptor distance (for 256-bit ORB descriptors)
|
54 |
+
normalized_descriptor_distance = max_descriptor_distance / 256
|
55 |
+
|
56 |
+
# Return both descriptor similarity and keypoint movement
|
57 |
+
#print(f"DEBUG!! max_descriptor_distance : {max_descriptor_distance}")
|
58 |
+
return max_movement_distance
|
59 |
+
|
60 |
+
|
61 |
+
def compute_ssim(prev_frame, curr_frame):
|
62 |
+
return ssim(prev_frame, curr_frame, data_range=255)
|
63 |
+
|
64 |
+
def compute_pixel_diff(prev_frame, curr_frame):
|
65 |
+
diff = cv2.absdiff(prev_frame, curr_frame)
|
66 |
+
return np.mean(diff)
|
67 |
+
|
68 |
+
def preprocess_frame(frame, width=640, height=360):
|
69 |
+
target_size = (width, height)
|
70 |
+
resized_frame = cv2.resize(frame, target_size, interpolation=cv2.INTER_AREA) # Use INTER_AREA for shrinking
|
71 |
+
return resized_frame
|
72 |
+
|
73 |
+
def smooth_curve(data, window_size=5):
|
74 |
+
return np.convolve(data, np.ones(window_size)/window_size, mode='valid')
|
75 |
+
|
76 |
+
def find_timestamp_clusters(fast_motion_timestamps, min_time_gap=5):
|
77 |
+
clusters = [] # List to hold the clusters of timestamps
|
78 |
+
current_cluster = [] # Temporary list to hold the current cluster
|
79 |
+
|
80 |
+
for i, timestamp in enumerate(fast_motion_timestamps):
|
81 |
+
# If it's the first timestamp, start a new cluster
|
82 |
+
if i == 0:
|
83 |
+
current_cluster.append(timestamp)
|
84 |
+
else:
|
85 |
+
# Check the time difference between the current and previous timestamp
|
86 |
+
if timestamp - fast_motion_timestamps[i-1] <= min_time_gap:
|
87 |
+
# If the difference is less than or equal to the min_time_gap, add it to the current cluster
|
88 |
+
current_cluster.append(timestamp)
|
89 |
+
else:
|
90 |
+
# If the difference is greater than min_time_gap, finish the current cluster and start a new one
|
91 |
+
clusters.append(current_cluster)
|
92 |
+
current_cluster = [timestamp]
|
93 |
+
|
94 |
+
# Add the last cluster to the clusters list
|
95 |
+
if current_cluster:
|
96 |
+
clusters.append(current_cluster)
|
97 |
+
|
98 |
+
return clusters
|
99 |
+
|
100 |
+
|
101 |
+
def detect_fast_motion(video_path, output_dir, end_time, start_time, window_size=3, motion_threshold=0.6, step = 2):
|
102 |
+
cap = cv2.VideoCapture(video_path)
|
103 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
104 |
+
height = cap.get(cv2.CAP_PROP_FRAME_HEIGHT)
|
105 |
+
width = cap.get(cv2.CAP_PROP_FRAME_WIDTH)
|
106 |
+
|
107 |
+
orb_scores = []
|
108 |
+
#optical_flow_scores = []
|
109 |
+
ssim_scores = []
|
110 |
+
#pixel_diff_scores = []
|
111 |
+
timestamps = []
|
112 |
+
frame_list = []
|
113 |
+
|
114 |
+
prev_frame = None
|
115 |
+
frame_count = 0
|
116 |
+
|
117 |
+
while cap.isOpened():
|
118 |
+
ret, orig_frame = cap.read()
|
119 |
+
if not ret:
|
120 |
+
break
|
121 |
+
#print(f"DEBUG!! frame : {frame_count} time : {frame_count/fps}")
|
122 |
+
|
123 |
+
if height == 360 and width == 640:
|
124 |
+
frame = orig_frame
|
125 |
+
else:
|
126 |
+
frame = preprocess_frame(orig_frame, width = 640, height = 360)
|
127 |
+
|
128 |
+
|
129 |
+
if frame_count > end_time * fps:
|
130 |
+
break
|
131 |
+
|
132 |
+
if frame_count < start_time * fps or frame_count % step != 0:
|
133 |
+
frame_count += 1
|
134 |
+
continue
|
135 |
+
|
136 |
+
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
137 |
+
|
138 |
+
if prev_frame is not None:
|
139 |
+
#optical_flow_scores.append(compute_optical_flow(prev_frame, gray))
|
140 |
+
orb_scores.append(compute_orb_distance(prev_frame, gray))
|
141 |
+
ssim_scores.append(compute_ssim(prev_frame, gray))
|
142 |
+
#pixel_diff_scores.append(compute_pixel_diff(prev_frame, gray))
|
143 |
+
#print(f"DEBUG : time : {frame_count/fps} end_time : {end_time} start_time : {start_time}")
|
144 |
+
timestamps.append(frame_count/fps)
|
145 |
+
else:
|
146 |
+
#optical_flow_scores.append(0)
|
147 |
+
orb_scores.append(0)
|
148 |
+
ssim_scores.append(1)
|
149 |
+
timestamps.append(start_time)
|
150 |
+
|
151 |
+
frame_list.append(frame)
|
152 |
+
prev_frame = gray
|
153 |
+
frame_count += 1
|
154 |
+
|
155 |
+
#if frame_count % 100 == 0:
|
156 |
+
# print(f"Processed {frame_count} frames")
|
157 |
+
|
158 |
+
cap.release()
|
159 |
+
|
160 |
+
new_fps = len(timestamps)/ (max(timestamps) - min(timestamps))
|
161 |
+
print(f"fps : {fps} frame_height : {height} frame_width : {width} New fps is {new_fps}")
|
162 |
+
# Normalize scores by image diagonal * time between frame : https://chatgpt.com/share/66f684b9-dd4c-8010-bf9c-421c3c6ef84a
|
163 |
+
|
164 |
+
#optical_flow_scores = np.array(optical_flow_scores) / (np.sqrt(gray.shape[0]**2 + gray.shape[1]**2) / new_fps)
|
165 |
+
ssim_scores = (1 - np.array(ssim_scores)) * new_fps # Invert SSIM scores
|
166 |
+
orb_scores = (np.array(orb_scores) * new_fps)/(np.sqrt(640**2 + 360**2))
|
167 |
+
|
168 |
+
# Smooth both SSIM and ORB scores
|
169 |
+
smoothed_ssim_scores = smooth_curve(ssim_scores, window_size=window_size)
|
170 |
+
smoothed_orb_scores = smooth_curve(orb_scores, window_size=window_size)
|
171 |
+
|
172 |
+
#pixel_diff_scores = np.array(pixel_diff_scores) / np.max(pixel_diff_scores)
|
173 |
+
|
174 |
+
# Combine metrics
|
175 |
+
combined_scores = (0.3 * orb_scores) + (0.7 * ssim_scores)
|
176 |
+
smoothed_combined_scores = (0.3 * smoothed_orb_scores) + (0.7 * smoothed_ssim_scores)
|
177 |
+
|
178 |
+
# Adjust X-axis to reflect the center of the window used for smoothing
|
179 |
+
adjusted_timestamps = timestamps[window_size // 2 : -(window_size // 2)]
|
180 |
+
|
181 |
+
# Detect fast motion using sliding window
|
182 |
+
fast_motion_timestamps = []
|
183 |
+
fast_motion_frames = []
|
184 |
+
fast_motion_mags = []
|
185 |
+
|
186 |
+
#for i in range(len(combined_scores) - window_size + 1):
|
187 |
+
# window = combined_scores[i:i + window_size]
|
188 |
+
# if np.mean(window) > motion_threshold:
|
189 |
+
# #print(f"DEBUG!! mean : {np.mean(window)} i : {i + (start_time * fps)} i+window_size : {i+window_size + (start_time * fps)} window : {window}")
|
190 |
+
# #fast_motion_frames.extend(range(i + int(start_time * fps), i + window_size + int(start_time * fps)))
|
191 |
+
# fast_motion_mags.extend(combined_scores[i:i + window_size])
|
192 |
+
# fast_motion_timestamps.extend(timestamps[i:i + window_size])
|
193 |
+
|
194 |
+
ids = []
|
195 |
+
for i in range(len(combined_scores)):
|
196 |
+
if combined_scores[i] > motion_threshold:
|
197 |
+
fast_motion_mags.append(combined_scores[i])
|
198 |
+
fast_motion_timestamps.append(timestamps[i])
|
199 |
+
fast_motion_frames.append(frame_list[i])
|
200 |
+
ids.append(i)
|
201 |
+
|
202 |
+
padded_fast_motion_frames = []
|
203 |
+
padded_fast_motion_timestamps = []
|
204 |
+
|
205 |
+
if len(ids) < 5 and len(ids) > 0:
|
206 |
+
#Padding fast_motion_frames and fast_motion_timestamps
|
207 |
+
padded_fast_motion_frames.extend(frame_list[min(ids) - 2:min(ids)])
|
208 |
+
padded_fast_motion_timestamps.extend(timestamps[min(ids) - 2:min(ids)])
|
209 |
+
|
210 |
+
padded_fast_motion_frames.extend(fast_motion_frames)
|
211 |
+
padded_fast_motion_timestamps.extend(fast_motion_timestamps)
|
212 |
+
|
213 |
+
padded_fast_motion_frames.extend(frame_list[max(ids) + 1:max(ids) + 3])
|
214 |
+
padded_fast_motion_timestamps.extend(timestamps[max(ids) + 1:max(ids) + 3])
|
215 |
+
print(f"padded_fast_motion_timestamps are {padded_fast_motion_timestamps}. Length of padded_fast_motion_timestamps is {len(padded_fast_motion_frames)}")
|
216 |
+
else:
|
217 |
+
padded_fast_motion_frames = fast_motion_frames
|
218 |
+
padded_fast_motion_timestamps = fast_motion_timestamps
|
219 |
+
|
220 |
+
# Plot results
|
221 |
+
plt.figure(figsize=(12, 6))
|
222 |
+
plt.plot(adjusted_timestamps, smoothed_orb_scores, label='ORB Distance')
|
223 |
+
plt.plot(adjusted_timestamps, smoothed_ssim_scores, label='Inverted SSIM')
|
224 |
+
#plt.plot(adjusted_timestamps, optical_flow_scores, label='Optical Flow')
|
225 |
+
plt.plot(adjusted_timestamps, smoothed_combined_scores, label='Combined Score')
|
226 |
+
plt.axhline(y=motion_threshold, color='r', linestyle='--', label='Threshold')
|
227 |
+
plt.xlabel('Frame')
|
228 |
+
plt.ylabel('Normalized Score')
|
229 |
+
plt.title('Motion Detection Metrics')
|
230 |
+
plt.legend()
|
231 |
+
plt.savefig(f"{output_dir}/motion_detection_plot_smoothened_{video_path.split('/')[-1].split('.')[0]}.png")
|
232 |
+
|
233 |
+
# Plot results
|
234 |
+
plt.figure(figsize=(12, 6))
|
235 |
+
#plt.plot(timestamps, orb_scores, label='ORB Distance')
|
236 |
+
plt.plot(timestamps, ssim_scores, label='Inverted SSIM')
|
237 |
+
#plt.plot(timestamps, optical_flow_scores, label='Optical Flow')
|
238 |
+
plt.plot(timestamps, combined_scores, label='Combined Score')
|
239 |
+
plt.axhline(y=motion_threshold, color='r', linestyle='--', label='Threshold')
|
240 |
+
plt.xlabel('Frame')
|
241 |
+
plt.ylabel('Normalized Score')
|
242 |
+
plt.title('Motion Detection Metrics')
|
243 |
+
plt.legend()
|
244 |
+
plt.savefig(f"{output_dir}/motion_detection_plot_raw_{video_path.split('/')[-1].split('.')[0]}.png")
|
245 |
+
|
246 |
+
|
247 |
+
# Print results
|
248 |
+
print(f"Max motion score is {np.max(combined_scores)} and mean motion score is {np.mean(combined_scores)} from {np.min(timestamps)} to {np.max(timestamps)}")
|
249 |
+
print(f"Detected {len(fast_motion_timestamps)} frames when step = {step}.")
|
250 |
+
try:
|
251 |
+
print(f"fast motion between {np.min(fast_motion_timestamps)} and {np.max(fast_motion_timestamps)}")
|
252 |
+
except:
|
253 |
+
pass
|
254 |
+
|
255 |
+
#for i in range(len(fast_motion_timestamps)):
|
256 |
+
# timestamp = fast_motion_timestamps[i]
|
257 |
+
# mag = fast_motion_mags[i]
|
258 |
+
# print(f"(Time: {timestamp:.2f}s) (Magnitude : {mag:.2f})")
|
259 |
+
|
260 |
+
if len(fast_motion_timestamps) == 0:
|
261 |
+
print("FAST MOTION NOT DETECTED!")
|
262 |
+
return [], []
|
263 |
+
elif len(fast_motion_timestamps) > 0.5 * len(combined_scores):
|
264 |
+
print("More than half of the video has fast motion")
|
265 |
+
return fast_motion_timestamps, padded_fast_motion_frames
|
266 |
+
else:
|
267 |
+
timestamp_clusters = find_timestamp_clusters(fast_motion_timestamps, min_time_gap = 5)
|
268 |
+
for timestamp_cluster in timestamp_clusters:
|
269 |
+
print(f"min time : {np.min(timestamp_cluster)} max time : {np.max(timestamp_cluster)} length : {len(timestamp_cluster)}")
|
270 |
+
return timestamp_clusters, padded_fast_motion_frames
|
271 |
+
|
272 |
+
|
273 |
+
'''
|
274 |
+
# Open the video file
|
275 |
+
video_path = "../test_videos/"
|
276 |
+
mp4_files = [f for f in os.listdir(video_path) if f.endswith('.mp4')]
|
277 |
+
output_dir = "motion_detection_results"
|
278 |
+
os.system(f"rm -rf {output_dir}")
|
279 |
+
os.system(f"mkdir {output_dir}")
|
280 |
+
end_time = 15
|
281 |
+
start_time = 0
|
282 |
+
|
283 |
+
for mp4_file in mp4_files:
|
284 |
+
print(f"\nAnalyzing video {mp4_file}")
|
285 |
+
|
286 |
+
if mp4_file == "8.mp4":
|
287 |
+
end_time = 60
|
288 |
+
start_time = 0
|
289 |
+
elif mp4_file == "6.mp4":
|
290 |
+
end_time = 32
|
291 |
+
start_time = 0
|
292 |
+
elif mp4_file == "3.mp4":
|
293 |
+
end_time = 6.5 #To remove last few frames that are blurry
|
294 |
+
start_time = 0
|
295 |
+
elif mp4_file == "2.mp4":
|
296 |
+
end_time = 182
|
297 |
+
start_time = 140
|
298 |
+
else:
|
299 |
+
end_time = 15
|
300 |
+
start_time = 0
|
301 |
+
|
302 |
+
#if mp4_file != "3.mp4" and mp4_file != "5.mp4" and mp4_file != "6.mp4":
|
303 |
+
# continue
|
304 |
+
|
305 |
+
start = time.time()
|
306 |
+
fast_motion_timestamps = detect_fast_motion(video_path + mp4_file, output_dir, end_time, start_time, motion_threshold = 1.5)
|
307 |
+
end = time.time()
|
308 |
+
|
309 |
+
print(f"Execution time for {mp4_file} : {end - start} seconds. Duration of the video was {end_time - start_time} seconds")
|
310 |
+
'''
|