import torch import torch.nn as nn import torch.nn.functional as F import numpy as np import numpy.random as npr import copy from functools import partial from contextlib import contextmanager from lib.model_zoo.common.get_model import get_model, register from lib.log_service import print_log from .openaimodel import \ TimestepEmbedSequential, conv_nd, zero_module, \ ResBlock, AttentionBlock, SpatialTransformer, \ Downsample, timestep_embedding @register('controlnet') class ControlNet(nn.Module): def __init__( self, image_size, in_channels, model_channels, hint_channels, num_res_blocks, attention_resolutions, dropout=0, channel_mult=(1, 2, 4, 8), conv_resample=True, dims=2, use_checkpoint=False, use_fp16=False, num_heads=-1, num_head_channels=-1, num_heads_upsample=-1, use_scale_shift_norm=False, resblock_updown=False, use_new_attention_order=False, use_spatial_transformer=False, # custom transformer support transformer_depth=1, # custom transformer support context_dim=None, # custom transformer support n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model legacy=True, disable_self_attentions=None, num_attention_blocks=None, disable_middle_self_attn=False, use_linear_in_transformer=False, ): super().__init__() if use_spatial_transformer: assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...' if context_dim is not None: assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...' from omegaconf.listconfig import ListConfig if type(context_dim) == ListConfig: context_dim = list(context_dim) if num_heads_upsample == -1: num_heads_upsample = num_heads if num_heads == -1: assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set' if num_head_channels == -1: assert num_heads != -1, 'Either num_heads or num_head_channels has to be set' self.dims = dims self.image_size = image_size self.in_channels = in_channels self.model_channels = model_channels if isinstance(num_res_blocks, int): self.num_res_blocks = len(channel_mult) * [num_res_blocks] else: if len(num_res_blocks) != len(channel_mult): raise ValueError("provide num_res_blocks either as an int (globally constant) or " "as a list/tuple (per-level) with the same length as channel_mult") self.num_res_blocks = num_res_blocks if disable_self_attentions is not None: # should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not assert len(disable_self_attentions) == len(channel_mult) if num_attention_blocks is not None: assert len(num_attention_blocks) == len(self.num_res_blocks) assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks)))) print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. " f"This option has LESS priority than attention_resolutions {attention_resolutions}, " f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, " f"attention will still not be set.") self.attention_resolutions = attention_resolutions self.dropout = dropout self.channel_mult = channel_mult self.conv_resample = conv_resample self.use_checkpoint = use_checkpoint self.dtype = torch.float16 if use_fp16 else torch.float32 self.num_heads = num_heads self.num_head_channels = num_head_channels self.num_heads_upsample = num_heads_upsample self.predict_codebook_ids = n_embed is not None time_embed_dim = model_channels * 4 self.time_embed = nn.Sequential( nn.Linear(model_channels, time_embed_dim), nn.SiLU(), nn.Linear(time_embed_dim, time_embed_dim), ) self.input_blocks = nn.ModuleList( [ TimestepEmbedSequential( conv_nd(dims, in_channels, model_channels, 3, padding=1) ) ] ) self.zero_convs = nn.ModuleList([self.make_zero_conv(model_channels)]) self.input_hint_block = TimestepEmbedSequential( conv_nd(dims, hint_channels, 16, 3, padding=1), nn.SiLU(), conv_nd(dims, 16, 16, 3, padding=1), nn.SiLU(), conv_nd(dims, 16, 32, 3, padding=1, stride=2), nn.SiLU(), conv_nd(dims, 32, 32, 3, padding=1), nn.SiLU(), conv_nd(dims, 32, 96, 3, padding=1, stride=2), nn.SiLU(), conv_nd(dims, 96, 96, 3, padding=1), nn.SiLU(), conv_nd(dims, 96, 256, 3, padding=1, stride=2), nn.SiLU(), zero_module(conv_nd(dims, 256, model_channels, 3, padding=1)) ) self._feature_size = model_channels input_block_chans = [model_channels] ch = model_channels ds = 1 for level, mult in enumerate(channel_mult): for nr in range(self.num_res_blocks[level]): layers = [ ResBlock( ch, time_embed_dim, dropout, out_channels=mult * model_channels, dims=dims, use_checkpoint=use_checkpoint, use_scale_shift_norm=use_scale_shift_norm, ) ] ch = mult * model_channels if ds in attention_resolutions: if num_head_channels == -1: dim_head = ch // num_heads else: num_heads = ch // num_head_channels dim_head = num_head_channels if legacy: # num_heads = 1 dim_head = ch // num_heads if use_spatial_transformer else num_head_channels if disable_self_attentions is not None: disabled_sa = disable_self_attentions[level] else: disabled_sa = False if (num_attention_blocks is None) or nr < num_attention_blocks[level]: layers.append( AttentionBlock( ch, use_checkpoint=use_checkpoint, num_heads=num_heads, num_head_channels=dim_head, use_new_attention_order=use_new_attention_order, ) if not use_spatial_transformer else SpatialTransformer( ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim, disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer, use_checkpoint=use_checkpoint ) ) self.input_blocks.append(TimestepEmbedSequential(*layers)) self.zero_convs.append(self.make_zero_conv(ch)) self._feature_size += ch input_block_chans.append(ch) if level != len(channel_mult) - 1: out_ch = ch self.input_blocks.append( TimestepEmbedSequential( ResBlock( ch, time_embed_dim, dropout, out_channels=out_ch, dims=dims, use_checkpoint=use_checkpoint, use_scale_shift_norm=use_scale_shift_norm, down=True, ) if resblock_updown else Downsample( ch, conv_resample, dims=dims, out_channels=out_ch ) ) ) ch = out_ch input_block_chans.append(ch) self.zero_convs.append(self.make_zero_conv(ch)) ds *= 2 self._feature_size += ch if num_head_channels == -1: dim_head = ch // num_heads else: num_heads = ch // num_head_channels dim_head = num_head_channels if legacy: # num_heads = 1 dim_head = ch // num_heads if use_spatial_transformer else num_head_channels self.middle_block = TimestepEmbedSequential( ResBlock( ch, time_embed_dim, dropout, dims=dims, use_checkpoint=use_checkpoint, use_scale_shift_norm=use_scale_shift_norm, ), AttentionBlock( ch, use_checkpoint=use_checkpoint, num_heads=num_heads, num_head_channels=dim_head, use_new_attention_order=use_new_attention_order, ) if not use_spatial_transformer else SpatialTransformer( # always uses a self-attn ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim, disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer, use_checkpoint=use_checkpoint ), ResBlock( ch, time_embed_dim, dropout, dims=dims, use_checkpoint=use_checkpoint, use_scale_shift_norm=use_scale_shift_norm, ), ) self.middle_block_out = self.make_zero_conv(ch) self._feature_size += ch def make_zero_conv(self, channels): return TimestepEmbedSequential(zero_module(conv_nd(self.dims, channels, channels, 1, padding=0))) def forward(self, x, hint, timesteps, context, **kwargs): t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False) t_emb = t_emb.to(x.dtype) emb = self.time_embed(t_emb) guided_hint = self.input_hint_block(hint, emb, context) outs = [] h = x for module, zero_conv in zip(self.input_blocks, self.zero_convs): if guided_hint is not None: h = module(h, emb, context) h += guided_hint guided_hint = None else: h = module(h, emb, context) outs.append(zero_conv(h, emb, context)) h = self.middle_block(h, emb, context) outs.append(self.middle_block_out(h, emb, context)) return outs def get_device(self): return self.time_embed[0].weight.device def get_dtype(self): return self.time_embed[0].weight.dtype def preprocess(self, x, type='canny', **kwargs): import torchvision.transforms as tvtrans if isinstance(x, str): import PIL.Image device, dtype = self.get_device(), self.get_dtype() x_list = [PIL.Image.open(x)] elif isinstance(x, torch.Tensor): x_list = [tvtrans.ToPILImage()(xi) for xi in x] device, dtype = x.device, x.dtype else: assert False if type == 'none' or type is None: return None elif type in ['input']: y_torch = torch.stack([tvtrans.ToTensor()(xi) for xi in x_list]) y_torch = y_torch.to(device).to(torch.float32) return y_torch elif type in ['canny']: low_threshold = kwargs.pop('low_threshold', 100) high_threshold = kwargs.pop('high_threshold', 200) from .controlnet_annotator.canny import apply_canny y_list = [apply_canny(np.array(xi), low_threshold, high_threshold) for xi in x_list] y_torch = torch.stack([tvtrans.ToTensor()(yi) for yi in y_list]) y_torch = y_torch.repeat(1, 3, 1, 1) # Make is RGB y_torch = y_torch.to(device).to(torch.float32) return y_torch elif type == 'depth': from .controlnet_annotator.midas import apply_midas, unload_midas_model y_list, _ = zip(*[apply_midas(input_image=np.array(xi), a=np.pi*2.0, device=device) for xi in x_list]) y_torch = torch.stack([tvtrans.ToTensor()(yi) for yi in y_list]) y_torch = y_torch.repeat(1, 3, 1, 1) # Make is RGB y_torch = y_torch.to(device).to(torch.float32) unload_midas_model() return y_torch elif type in ['hed']: from .controlnet_annotator.hed import apply_hed, unload_hed_model y_list = [apply_hed(np.array(xi), device=device) for xi in x_list] y_torch = torch.stack([tvtrans.ToTensor()(yi) for yi in y_list]) y_torch = y_torch.repeat(1, 3, 1, 1) # Make is RGB y_torch = y_torch.to(device).to(torch.float32) from .controlnet_annotator.midas import model as model_midas unload_hed_model() return y_torch elif type in ['mlsd', 'mlsd_v11p']: thr_v = kwargs.pop('thr_v', 0.1) thr_d = kwargs.pop('thr_d', 0.1) from .controlnet_annotator.mlsd import apply_mlsd, unload_mlsd_model y_list = [apply_mlsd(np.array(xi), thr_v=thr_v, thr_d=thr_d, device=device) for xi in x_list] y_torch = torch.stack([tvtrans.ToTensor()(yi) for yi in y_list]) y_torch = y_torch.repeat(1, 3, 1, 1) # Make is RGB y_torch = y_torch.to(device).to(torch.float32) unload_mlsd_model() return y_torch elif type == 'normal': bg_th = kwargs.pop('bg_th', 0.4) from .controlnet_annotator.midas import apply_midas, unload_midas_model _, y_list = zip(*[apply_midas(input_image=np.array(xi), a=np.pi*2.0, bg_th=bg_th, device=device) for xi in x_list]) y_torch = torch.stack([tvtrans.ToTensor()(yi.copy()) for yi in y_list]) unload_midas_model() return y_torch elif type in ['openpose']: from .controlnet_annotator.openpose import OpenposeModel from functools import partial wrapper = OpenposeModel() apply_openpose = partial( wrapper.run_model, include_body=True, include_hand=False, include_face=False, json_pose_callback=None, device=device) y_list = [apply_openpose(np.array(xi)) for xi in x_list] y_torch = torch.stack([tvtrans.ToTensor()(yi.copy()) for yi in y_list]) y_torch = y_torch.to(device).to(torch.float32) wrapper.unload() return y_torch elif type in ['openpose_withface']: from .controlnet_annotator.openpose import OpenposeModel from functools import partial wrapper = OpenposeModel() apply_openpose = partial( wrapper.run_model, include_body=True, include_hand=False, include_face=True, json_pose_callback=None, device=device) y_list = [apply_openpose(np.array(xi)) for xi in x_list] y_torch = torch.stack([tvtrans.ToTensor()(yi.copy()) for yi in y_list]) y_torch = y_torch.to(device).to(torch.float32) wrapper.unload() return y_torch elif type in ['openpose_withfacehand']: from .controlnet_annotator.openpose import OpenposeModel from functools import partial wrapper = OpenposeModel() apply_openpose = partial( wrapper.run_model, include_body=True, include_hand=True, include_face=True, json_pose_callback=None, device=device) y_list = [apply_openpose(np.array(xi)) for xi in x_list] y_torch = torch.stack([tvtrans.ToTensor()(yi.copy()) for yi in y_list]) y_torch = y_torch.to(device).to(torch.float32) wrapper.unload() return y_torch elif type == 'scribble': method = kwargs.pop('method', 'pidinet') import cv2 def nms(x, t, s): x = cv2.GaussianBlur(x.astype(np.float32), (0, 0), s) f1 = np.array([[0, 0, 0], [1, 1, 1], [0, 0, 0]], dtype=np.uint8) f2 = np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], dtype=np.uint8) f3 = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.uint8) f4 = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=np.uint8) y = np.zeros_like(x) for f in [f1, f2, f3, f4]: np.putmask(y, cv2.dilate(x, kernel=f) == x, x) z = np.zeros_like(y, dtype=np.uint8) z[y > t] = 255 return z def make_scribble(result): result = nms(result, 127, 3.0) result = cv2.GaussianBlur(result, (0, 0), 3.0) result[result > 4] = 255 result[result < 255] = 0 return result if method == 'hed': from .controlnet_annotator.hed import apply_hed, unload_hed_model y_list = [apply_hed(np.array(xi), device=device) for xi in x_list] y_list = [make_scribble(yi) for yi in y_list] y_torch = torch.stack([tvtrans.ToTensor()(yi) for yi in y_list]) y_torch = y_torch.repeat(1, 3, 1, 1) # Make is RGB y_torch = y_torch.to(device).to(torch.float32) unload_hed_model() return y_torch elif method == 'pidinet': from .controlnet_annotator.pidinet import apply_pidinet, unload_pid_model y_list = [apply_pidinet(np.array(xi), device=device) for xi in x_list] y_list = [make_scribble(yi) for yi in y_list] y_torch = torch.stack([tvtrans.ToTensor()(yi) for yi in y_list]) y_torch = y_torch.repeat(1, 3, 1, 1) # Make is RGB y_torch = y_torch.to(device).to(torch.float32) unload_pid_model() return y_torch elif method == 'xdog': threshold = kwargs.pop('threshold', 32) def apply_scribble_xdog(img): g1 = cv2.GaussianBlur(img.astype(np.float32), (0, 0), 0.5) g2 = cv2.GaussianBlur(img.astype(np.float32), (0, 0), 5.0) dog = (255 - np.min(g2 - g1, axis=2)).clip(0, 255).astype(np.uint8) result = np.zeros_like(img, dtype=np.uint8) result[2 * (255 - dog) > threshold] = 255 return result y_list = [apply_scribble_xdog(np.array(xi), device=device) for xi in x_list] y_torch = torch.stack([tvtrans.ToTensor()(yi) for yi in y_list]) y_torch = y_torch.repeat(1, 3, 1, 1) # Make is RGB y_torch = y_torch.to(device).to(torch.float32) return y_torch else: raise ValueError elif type == 'seg': assert False, "This part is broken" # method = kwargs.pop('method', 'ufade20k') # if method == 'ufade20k': # from .controlnet_annotator.uniformer import apply_uniformer # y_list = [apply_uniformer(np.array(xi), palette='ade20k', device=device) for xi in x_list] # y_torch = torch.stack([tvtrans.ToTensor()(yi) for yi in y_list]) # y_torch = y_torch.to(device).to(torch.float32) # return y_torch # else: # raise ValueError