import torch import torch.nn as nn import torch.nn.functional as F from contextlib import contextmanager from lib.model_zoo.common.get_model import get_model, register # from taming.modules.vqvae.quantize import VectorQuantizer2 as VectorQuantizer from .autokl_modules import Encoder, Decoder from .distributions import DiagonalGaussianDistribution from .autokl_utils import LPIPSWithDiscriminator @register('autoencoderkl') class AutoencoderKL(nn.Module): def __init__(self, ddconfig, lossconfig, embed_dim,): super().__init__() self.encoder = Encoder(**ddconfig) self.decoder = Decoder(**ddconfig) if lossconfig is not None: self.loss = LPIPSWithDiscriminator(**lossconfig) assert ddconfig["double_z"] self.quant_conv = torch.nn.Conv2d(2*ddconfig["z_channels"], 2*embed_dim, 1) self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1) self.embed_dim = embed_dim @torch.no_grad() def encode(self, x, out_posterior=False): return self.encode_trainable(x, out_posterior) def encode_trainable(self, x, out_posterior=False): x = x*2-1 h = self.encoder(x) moments = self.quant_conv(h) posterior = DiagonalGaussianDistribution(moments) if out_posterior: return posterior else: return posterior.sample() @torch.no_grad() def decode(self, z): dec = self.decode_trainable(z) dec = torch.clamp(dec, 0, 1) return dec def decode_trainable(self, z): z = self.post_quant_conv(z) dec = self.decoder(z) dec = (dec+1)/2 return dec def apply_model(self, input, sample_posterior=True): posterior = self.encode_trainable(input, out_posterior=True) if sample_posterior: z = posterior.sample() else: z = posterior.mode() dec = self.decode_trainable(z) return dec, posterior def get_input(self, batch, k): x = batch[k] if len(x.shape) == 3: x = x[..., None] x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float() return x def forward(self, x, optimizer_idx, global_step): reconstructions, posterior = self.apply_model(x) if optimizer_idx == 0: # train encoder+decoder+logvar aeloss, log_dict_ae = self.loss(x, reconstructions, posterior, optimizer_idx, global_step=global_step, last_layer=self.get_last_layer(), split="train") return aeloss, log_dict_ae if optimizer_idx == 1: # train the discriminator discloss, log_dict_disc = self.loss(x, reconstructions, posterior, optimizer_idx, global_step=global_step, last_layer=self.get_last_layer(), split="train") return discloss, log_dict_disc def validation_step(self, batch, batch_idx): inputs = self.get_input(batch, self.image_key) reconstructions, posterior = self(inputs) aeloss, log_dict_ae = self.loss(inputs, reconstructions, posterior, 0, self.global_step, last_layer=self.get_last_layer(), split="val") discloss, log_dict_disc = self.loss(inputs, reconstructions, posterior, 1, self.global_step, last_layer=self.get_last_layer(), split="val") self.log("val/rec_loss", log_dict_ae["val/rec_loss"]) self.log_dict(log_dict_ae) self.log_dict(log_dict_disc) return self.log_dict def configure_optimizers(self): lr = self.learning_rate opt_ae = torch.optim.Adam(list(self.encoder.parameters())+ list(self.decoder.parameters())+ list(self.quant_conv.parameters())+ list(self.post_quant_conv.parameters()), lr=lr, betas=(0.5, 0.9)) opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(), lr=lr, betas=(0.5, 0.9)) return [opt_ae, opt_disc], [] def get_last_layer(self): return self.decoder.conv_out.weight @torch.no_grad() def log_images(self, batch, only_inputs=False, **kwargs): log = dict() x = self.get_input(batch, self.image_key) x = x.to(self.device) if not only_inputs: xrec, posterior = self(x) if x.shape[1] > 3: # colorize with random projection assert xrec.shape[1] > 3 x = self.to_rgb(x) xrec = self.to_rgb(xrec) log["samples"] = self.decode(torch.randn_like(posterior.sample())) log["reconstructions"] = xrec log["inputs"] = x return log def to_rgb(self, x): assert self.image_key == "segmentation" if not hasattr(self, "colorize"): self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x)) x = F.conv2d(x, weight=self.colorize) x = 2.*(x-x.min())/(x.max()-x.min()) - 1. return x @register('autoencoderkl_customnorm') class AutoencoderKL_CustomNorm(AutoencoderKL): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.mean = torch.Tensor([0.48145466, 0.4578275, 0.40821073]) self.std = torch.Tensor([0.26862954, 0.26130258, 0.27577711]) def encode_trainable(self, x, out_posterior=False): m = self.mean[None, :, None, None].to(z.device).to(z.dtype) s = self.std[None, :, None, None].to(z.device).to(z.dtype) x = (x-m)/s h = self.encoder(x) moments = self.quant_conv(h) posterior = DiagonalGaussianDistribution(moments) if out_posterior: return posterior else: return posterior.sample() def decode_trainable(self, z): m = self.mean[None, :, None, None].to(z.device).to(z.dtype) s = self.std[None, :, None, None].to(z.device).to(z.dtype) z = self.post_quant_conv(z) dec = self.decoder(z) dec = (dec+1)/2 return dec