3v324v23's picture
try fix the preprocess OOM issue
8016317
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import numpy.random as npr
import copy
from functools import partial
from contextlib import contextmanager
from lib.model_zoo.common.get_model import get_model, register
from lib.log_service import print_log
from .openaimodel import \
TimestepEmbedSequential, conv_nd, zero_module, \
ResBlock, AttentionBlock, SpatialTransformer, \
Downsample, timestep_embedding
@register('controlnet')
class ControlNet(nn.Module):
def __init__(
self,
image_size,
in_channels,
model_channels,
hint_channels,
num_res_blocks,
attention_resolutions,
dropout=0,
channel_mult=(1, 2, 4, 8),
conv_resample=True,
dims=2,
use_checkpoint=False,
use_fp16=False,
num_heads=-1,
num_head_channels=-1,
num_heads_upsample=-1,
use_scale_shift_norm=False,
resblock_updown=False,
use_new_attention_order=False,
use_spatial_transformer=False, # custom transformer support
transformer_depth=1, # custom transformer support
context_dim=None, # custom transformer support
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model
legacy=True,
disable_self_attentions=None,
num_attention_blocks=None,
disable_middle_self_attn=False,
use_linear_in_transformer=False,
):
super().__init__()
if use_spatial_transformer:
assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...'
if context_dim is not None:
assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...'
from omegaconf.listconfig import ListConfig
if type(context_dim) == ListConfig:
context_dim = list(context_dim)
if num_heads_upsample == -1:
num_heads_upsample = num_heads
if num_heads == -1:
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set'
if num_head_channels == -1:
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set'
self.dims = dims
self.image_size = image_size
self.in_channels = in_channels
self.model_channels = model_channels
if isinstance(num_res_blocks, int):
self.num_res_blocks = len(channel_mult) * [num_res_blocks]
else:
if len(num_res_blocks) != len(channel_mult):
raise ValueError("provide num_res_blocks either as an int (globally constant) or "
"as a list/tuple (per-level) with the same length as channel_mult")
self.num_res_blocks = num_res_blocks
if disable_self_attentions is not None:
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not
assert len(disable_self_attentions) == len(channel_mult)
if num_attention_blocks is not None:
assert len(num_attention_blocks) == len(self.num_res_blocks)
assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks))))
print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. "
f"This option has LESS priority than attention_resolutions {attention_resolutions}, "
f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, "
f"attention will still not be set.")
self.attention_resolutions = attention_resolutions
self.dropout = dropout
self.channel_mult = channel_mult
self.conv_resample = conv_resample
self.use_checkpoint = use_checkpoint
self.dtype = torch.float16 if use_fp16 else torch.float32
self.num_heads = num_heads
self.num_head_channels = num_head_channels
self.num_heads_upsample = num_heads_upsample
self.predict_codebook_ids = n_embed is not None
time_embed_dim = model_channels * 4
self.time_embed = nn.Sequential(
nn.Linear(model_channels, time_embed_dim),
nn.SiLU(),
nn.Linear(time_embed_dim, time_embed_dim),
)
self.input_blocks = nn.ModuleList(
[
TimestepEmbedSequential(
conv_nd(dims, in_channels, model_channels, 3, padding=1)
)
]
)
self.zero_convs = nn.ModuleList([self.make_zero_conv(model_channels)])
self.input_hint_block = TimestepEmbedSequential(
conv_nd(dims, hint_channels, 16, 3, padding=1),
nn.SiLU(),
conv_nd(dims, 16, 16, 3, padding=1),
nn.SiLU(),
conv_nd(dims, 16, 32, 3, padding=1, stride=2),
nn.SiLU(),
conv_nd(dims, 32, 32, 3, padding=1),
nn.SiLU(),
conv_nd(dims, 32, 96, 3, padding=1, stride=2),
nn.SiLU(),
conv_nd(dims, 96, 96, 3, padding=1),
nn.SiLU(),
conv_nd(dims, 96, 256, 3, padding=1, stride=2),
nn.SiLU(),
zero_module(conv_nd(dims, 256, model_channels, 3, padding=1))
)
self._feature_size = model_channels
input_block_chans = [model_channels]
ch = model_channels
ds = 1
for level, mult in enumerate(channel_mult):
for nr in range(self.num_res_blocks[level]):
layers = [
ResBlock(
ch,
time_embed_dim,
dropout,
out_channels=mult * model_channels,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
)
]
ch = mult * model_channels
if ds in attention_resolutions:
if num_head_channels == -1:
dim_head = ch // num_heads
else:
num_heads = ch // num_head_channels
dim_head = num_head_channels
if legacy:
# num_heads = 1
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
if disable_self_attentions is not None:
disabled_sa = disable_self_attentions[level]
else:
disabled_sa = False
if (num_attention_blocks is None) or nr < num_attention_blocks[level]:
layers.append(
AttentionBlock(
ch,
use_checkpoint=use_checkpoint,
num_heads=num_heads,
num_head_channels=dim_head,
use_new_attention_order=use_new_attention_order,
) if not use_spatial_transformer else SpatialTransformer(
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer,
use_checkpoint=use_checkpoint
)
)
self.input_blocks.append(TimestepEmbedSequential(*layers))
self.zero_convs.append(self.make_zero_conv(ch))
self._feature_size += ch
input_block_chans.append(ch)
if level != len(channel_mult) - 1:
out_ch = ch
self.input_blocks.append(
TimestepEmbedSequential(
ResBlock(
ch,
time_embed_dim,
dropout,
out_channels=out_ch,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
down=True,
)
if resblock_updown
else Downsample(
ch, conv_resample, dims=dims, out_channels=out_ch
)
)
)
ch = out_ch
input_block_chans.append(ch)
self.zero_convs.append(self.make_zero_conv(ch))
ds *= 2
self._feature_size += ch
if num_head_channels == -1:
dim_head = ch // num_heads
else:
num_heads = ch // num_head_channels
dim_head = num_head_channels
if legacy:
# num_heads = 1
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels
self.middle_block = TimestepEmbedSequential(
ResBlock(
ch,
time_embed_dim,
dropout,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
),
AttentionBlock(
ch,
use_checkpoint=use_checkpoint,
num_heads=num_heads,
num_head_channels=dim_head,
use_new_attention_order=use_new_attention_order,
) if not use_spatial_transformer else SpatialTransformer( # always uses a self-attn
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim,
disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer,
use_checkpoint=use_checkpoint
),
ResBlock(
ch,
time_embed_dim,
dropout,
dims=dims,
use_checkpoint=use_checkpoint,
use_scale_shift_norm=use_scale_shift_norm,
),
)
self.middle_block_out = self.make_zero_conv(ch)
self._feature_size += ch
def make_zero_conv(self, channels):
return TimestepEmbedSequential(zero_module(conv_nd(self.dims, channels, channels, 1, padding=0)))
def forward(self, x, hint, timesteps, context, **kwargs):
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False)
t_emb = t_emb.to(x.dtype)
emb = self.time_embed(t_emb)
guided_hint = self.input_hint_block(hint, emb, context)
outs = []
h = x
for module, zero_conv in zip(self.input_blocks, self.zero_convs):
if guided_hint is not None:
h = module(h, emb, context)
h += guided_hint
guided_hint = None
else:
h = module(h, emb, context)
outs.append(zero_conv(h, emb, context))
h = self.middle_block(h, emb, context)
outs.append(self.middle_block_out(h, emb, context))
return outs
def get_device(self):
return self.time_embed[0].weight.device
def get_dtype(self):
return self.time_embed[0].weight.dtype
def preprocess(self, x, type='canny', **kwargs):
import torchvision.transforms as tvtrans
if isinstance(x, str):
import PIL.Image
device, dtype = self.get_device(), self.get_dtype()
x_list = [PIL.Image.open(x)]
elif isinstance(x, torch.Tensor):
x_list = [tvtrans.ToPILImage()(xi) for xi in x]
device, dtype = x.device, x.dtype
else:
assert False
if type == 'none' or type is None:
return None
elif type in ['input']:
y_torch = torch.stack([tvtrans.ToTensor()(xi) for xi in x_list])
y_torch = y_torch.to(device).to(torch.float32)
return y_torch
elif type in ['canny']:
low_threshold = kwargs.pop('low_threshold', 100)
high_threshold = kwargs.pop('high_threshold', 200)
from .controlnet_annotator.canny import apply_canny
y_list = [apply_canny(np.array(xi), low_threshold, high_threshold) for xi in x_list]
y_torch = torch.stack([tvtrans.ToTensor()(yi) for yi in y_list])
y_torch = y_torch.repeat(1, 3, 1, 1) # Make is RGB
y_torch = y_torch.to(device).to(torch.float32)
return y_torch
elif type == 'depth':
from .controlnet_annotator.midas import apply_midas, unload_midas_model
y_list, _ = zip(*[apply_midas(input_image=np.array(xi), a=np.pi*2.0, device=device) for xi in x_list])
y_torch = torch.stack([tvtrans.ToTensor()(yi) for yi in y_list])
y_torch = y_torch.repeat(1, 3, 1, 1) # Make is RGB
y_torch = y_torch.to(device).to(torch.float32)
unload_midas_model()
return y_torch
elif type in ['hed']:
from .controlnet_annotator.hed import apply_hed, unload_hed_model
y_list = [apply_hed(np.array(xi), device=device) for xi in x_list]
y_torch = torch.stack([tvtrans.ToTensor()(yi) for yi in y_list])
y_torch = y_torch.repeat(1, 3, 1, 1) # Make is RGB
y_torch = y_torch.to(device).to(torch.float32)
from .controlnet_annotator.midas import model as model_midas
unload_hed_model()
return y_torch
elif type in ['mlsd', 'mlsd_v11p']:
thr_v = kwargs.pop('thr_v', 0.1)
thr_d = kwargs.pop('thr_d', 0.1)
from .controlnet_annotator.mlsd import apply_mlsd, unload_mlsd_model
y_list = [apply_mlsd(np.array(xi), thr_v=thr_v, thr_d=thr_d, device=device) for xi in x_list]
y_torch = torch.stack([tvtrans.ToTensor()(yi) for yi in y_list])
y_torch = y_torch.repeat(1, 3, 1, 1) # Make is RGB
y_torch = y_torch.to(device).to(torch.float32)
unload_mlsd_model()
return y_torch
elif type == 'normal':
bg_th = kwargs.pop('bg_th', 0.4)
from .controlnet_annotator.midas import apply_midas, unload_midas_model
_, y_list = zip(*[apply_midas(input_image=np.array(xi), a=np.pi*2.0, bg_th=bg_th, device=device) for xi in x_list])
y_torch = torch.stack([tvtrans.ToTensor()(yi.copy()) for yi in y_list])
unload_midas_model()
return y_torch
elif type in ['openpose']:
from .controlnet_annotator.openpose import OpenposeModel
from functools import partial
wrapper = OpenposeModel()
apply_openpose = partial(
wrapper.run_model, include_body=True, include_hand=False, include_face=False,
json_pose_callback=None, device=device)
y_list = [apply_openpose(np.array(xi)) for xi in x_list]
y_torch = torch.stack([tvtrans.ToTensor()(yi.copy()) for yi in y_list])
y_torch = y_torch.to(device).to(torch.float32)
wrapper.unload()
return y_torch
elif type in ['openpose_withface']:
from .controlnet_annotator.openpose import OpenposeModel
from functools import partial
wrapper = OpenposeModel()
apply_openpose = partial(
wrapper.run_model, include_body=True, include_hand=False, include_face=True,
json_pose_callback=None, device=device)
y_list = [apply_openpose(np.array(xi)) for xi in x_list]
y_torch = torch.stack([tvtrans.ToTensor()(yi.copy()) for yi in y_list])
y_torch = y_torch.to(device).to(torch.float32)
wrapper.unload()
return y_torch
elif type in ['openpose_withfacehand']:
from .controlnet_annotator.openpose import OpenposeModel
from functools import partial
wrapper = OpenposeModel()
apply_openpose = partial(
wrapper.run_model, include_body=True, include_hand=True, include_face=True,
json_pose_callback=None, device=device)
y_list = [apply_openpose(np.array(xi)) for xi in x_list]
y_torch = torch.stack([tvtrans.ToTensor()(yi.copy()) for yi in y_list])
y_torch = y_torch.to(device).to(torch.float32)
wrapper.unload()
return y_torch
elif type == 'scribble':
method = kwargs.pop('method', 'pidinet')
import cv2
def nms(x, t, s):
x = cv2.GaussianBlur(x.astype(np.float32), (0, 0), s)
f1 = np.array([[0, 0, 0], [1, 1, 1], [0, 0, 0]], dtype=np.uint8)
f2 = np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], dtype=np.uint8)
f3 = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.uint8)
f4 = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=np.uint8)
y = np.zeros_like(x)
for f in [f1, f2, f3, f4]:
np.putmask(y, cv2.dilate(x, kernel=f) == x, x)
z = np.zeros_like(y, dtype=np.uint8)
z[y > t] = 255
return z
def make_scribble(result):
result = nms(result, 127, 3.0)
result = cv2.GaussianBlur(result, (0, 0), 3.0)
result[result > 4] = 255
result[result < 255] = 0
return result
if method == 'hed':
from .controlnet_annotator.hed import apply_hed, unload_hed_model
y_list = [apply_hed(np.array(xi), device=device) for xi in x_list]
y_list = [make_scribble(yi) for yi in y_list]
y_torch = torch.stack([tvtrans.ToTensor()(yi) for yi in y_list])
y_torch = y_torch.repeat(1, 3, 1, 1) # Make is RGB
y_torch = y_torch.to(device).to(torch.float32)
unload_hed_model()
return y_torch
elif method == 'pidinet':
from .controlnet_annotator.pidinet import apply_pidinet, unload_pid_model
y_list = [apply_pidinet(np.array(xi), device=device) for xi in x_list]
y_list = [make_scribble(yi) for yi in y_list]
y_torch = torch.stack([tvtrans.ToTensor()(yi) for yi in y_list])
y_torch = y_torch.repeat(1, 3, 1, 1) # Make is RGB
y_torch = y_torch.to(device).to(torch.float32)
unload_pid_model()
return y_torch
elif method == 'xdog':
threshold = kwargs.pop('threshold', 32)
def apply_scribble_xdog(img):
g1 = cv2.GaussianBlur(img.astype(np.float32), (0, 0), 0.5)
g2 = cv2.GaussianBlur(img.astype(np.float32), (0, 0), 5.0)
dog = (255 - np.min(g2 - g1, axis=2)).clip(0, 255).astype(np.uint8)
result = np.zeros_like(img, dtype=np.uint8)
result[2 * (255 - dog) > threshold] = 255
return result
y_list = [apply_scribble_xdog(np.array(xi), device=device) for xi in x_list]
y_torch = torch.stack([tvtrans.ToTensor()(yi) for yi in y_list])
y_torch = y_torch.repeat(1, 3, 1, 1) # Make is RGB
y_torch = y_torch.to(device).to(torch.float32)
return y_torch
else:
raise ValueError
elif type == 'seg':
assert False, "This part is broken"
# method = kwargs.pop('method', 'ufade20k')
# if method == 'ufade20k':
# from .controlnet_annotator.uniformer import apply_uniformer
# y_list = [apply_uniformer(np.array(xi), palette='ade20k', device=device) for xi in x_list]
# y_torch = torch.stack([tvtrans.ToTensor()(yi) for yi in y_list])
# y_torch = y_torch.to(device).to(torch.float32)
# return y_torch
# else:
# raise ValueError