Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import numpy as np | |
import numpy.random as npr | |
import copy | |
from functools import partial | |
from contextlib import contextmanager | |
from lib.model_zoo.common.get_model import get_model, register | |
from lib.log_service import print_log | |
from .openaimodel import \ | |
TimestepEmbedSequential, conv_nd, zero_module, \ | |
ResBlock, AttentionBlock, SpatialTransformer, \ | |
Downsample, timestep_embedding | |
class ControlNet(nn.Module): | |
def __init__( | |
self, | |
image_size, | |
in_channels, | |
model_channels, | |
hint_channels, | |
num_res_blocks, | |
attention_resolutions, | |
dropout=0, | |
channel_mult=(1, 2, 4, 8), | |
conv_resample=True, | |
dims=2, | |
use_checkpoint=False, | |
use_fp16=False, | |
num_heads=-1, | |
num_head_channels=-1, | |
num_heads_upsample=-1, | |
use_scale_shift_norm=False, | |
resblock_updown=False, | |
use_new_attention_order=False, | |
use_spatial_transformer=False, # custom transformer support | |
transformer_depth=1, # custom transformer support | |
context_dim=None, # custom transformer support | |
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model | |
legacy=True, | |
disable_self_attentions=None, | |
num_attention_blocks=None, | |
disable_middle_self_attn=False, | |
use_linear_in_transformer=False, | |
): | |
super().__init__() | |
if use_spatial_transformer: | |
assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...' | |
if context_dim is not None: | |
assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...' | |
from omegaconf.listconfig import ListConfig | |
if type(context_dim) == ListConfig: | |
context_dim = list(context_dim) | |
if num_heads_upsample == -1: | |
num_heads_upsample = num_heads | |
if num_heads == -1: | |
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set' | |
if num_head_channels == -1: | |
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set' | |
self.dims = dims | |
self.image_size = image_size | |
self.in_channels = in_channels | |
self.model_channels = model_channels | |
if isinstance(num_res_blocks, int): | |
self.num_res_blocks = len(channel_mult) * [num_res_blocks] | |
else: | |
if len(num_res_blocks) != len(channel_mult): | |
raise ValueError("provide num_res_blocks either as an int (globally constant) or " | |
"as a list/tuple (per-level) with the same length as channel_mult") | |
self.num_res_blocks = num_res_blocks | |
if disable_self_attentions is not None: | |
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not | |
assert len(disable_self_attentions) == len(channel_mult) | |
if num_attention_blocks is not None: | |
assert len(num_attention_blocks) == len(self.num_res_blocks) | |
assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks)))) | |
print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. " | |
f"This option has LESS priority than attention_resolutions {attention_resolutions}, " | |
f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, " | |
f"attention will still not be set.") | |
self.attention_resolutions = attention_resolutions | |
self.dropout = dropout | |
self.channel_mult = channel_mult | |
self.conv_resample = conv_resample | |
self.use_checkpoint = use_checkpoint | |
self.dtype = torch.float16 if use_fp16 else torch.float32 | |
self.num_heads = num_heads | |
self.num_head_channels = num_head_channels | |
self.num_heads_upsample = num_heads_upsample | |
self.predict_codebook_ids = n_embed is not None | |
time_embed_dim = model_channels * 4 | |
self.time_embed = nn.Sequential( | |
nn.Linear(model_channels, time_embed_dim), | |
nn.SiLU(), | |
nn.Linear(time_embed_dim, time_embed_dim), | |
) | |
self.input_blocks = nn.ModuleList( | |
[ | |
TimestepEmbedSequential( | |
conv_nd(dims, in_channels, model_channels, 3, padding=1) | |
) | |
] | |
) | |
self.zero_convs = nn.ModuleList([self.make_zero_conv(model_channels)]) | |
self.input_hint_block = TimestepEmbedSequential( | |
conv_nd(dims, hint_channels, 16, 3, padding=1), | |
nn.SiLU(), | |
conv_nd(dims, 16, 16, 3, padding=1), | |
nn.SiLU(), | |
conv_nd(dims, 16, 32, 3, padding=1, stride=2), | |
nn.SiLU(), | |
conv_nd(dims, 32, 32, 3, padding=1), | |
nn.SiLU(), | |
conv_nd(dims, 32, 96, 3, padding=1, stride=2), | |
nn.SiLU(), | |
conv_nd(dims, 96, 96, 3, padding=1), | |
nn.SiLU(), | |
conv_nd(dims, 96, 256, 3, padding=1, stride=2), | |
nn.SiLU(), | |
zero_module(conv_nd(dims, 256, model_channels, 3, padding=1)) | |
) | |
self._feature_size = model_channels | |
input_block_chans = [model_channels] | |
ch = model_channels | |
ds = 1 | |
for level, mult in enumerate(channel_mult): | |
for nr in range(self.num_res_blocks[level]): | |
layers = [ | |
ResBlock( | |
ch, | |
time_embed_dim, | |
dropout, | |
out_channels=mult * model_channels, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
) | |
] | |
ch = mult * model_channels | |
if ds in attention_resolutions: | |
if num_head_channels == -1: | |
dim_head = ch // num_heads | |
else: | |
num_heads = ch // num_head_channels | |
dim_head = num_head_channels | |
if legacy: | |
# num_heads = 1 | |
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels | |
if disable_self_attentions is not None: | |
disabled_sa = disable_self_attentions[level] | |
else: | |
disabled_sa = False | |
if (num_attention_blocks is None) or nr < num_attention_blocks[level]: | |
layers.append( | |
AttentionBlock( | |
ch, | |
use_checkpoint=use_checkpoint, | |
num_heads=num_heads, | |
num_head_channels=dim_head, | |
use_new_attention_order=use_new_attention_order, | |
) if not use_spatial_transformer else SpatialTransformer( | |
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim, | |
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer, | |
use_checkpoint=use_checkpoint | |
) | |
) | |
self.input_blocks.append(TimestepEmbedSequential(*layers)) | |
self.zero_convs.append(self.make_zero_conv(ch)) | |
self._feature_size += ch | |
input_block_chans.append(ch) | |
if level != len(channel_mult) - 1: | |
out_ch = ch | |
self.input_blocks.append( | |
TimestepEmbedSequential( | |
ResBlock( | |
ch, | |
time_embed_dim, | |
dropout, | |
out_channels=out_ch, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
down=True, | |
) | |
if resblock_updown | |
else Downsample( | |
ch, conv_resample, dims=dims, out_channels=out_ch | |
) | |
) | |
) | |
ch = out_ch | |
input_block_chans.append(ch) | |
self.zero_convs.append(self.make_zero_conv(ch)) | |
ds *= 2 | |
self._feature_size += ch | |
if num_head_channels == -1: | |
dim_head = ch // num_heads | |
else: | |
num_heads = ch // num_head_channels | |
dim_head = num_head_channels | |
if legacy: | |
# num_heads = 1 | |
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels | |
self.middle_block = TimestepEmbedSequential( | |
ResBlock( | |
ch, | |
time_embed_dim, | |
dropout, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
), | |
AttentionBlock( | |
ch, | |
use_checkpoint=use_checkpoint, | |
num_heads=num_heads, | |
num_head_channels=dim_head, | |
use_new_attention_order=use_new_attention_order, | |
) if not use_spatial_transformer else SpatialTransformer( # always uses a self-attn | |
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim, | |
disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer, | |
use_checkpoint=use_checkpoint | |
), | |
ResBlock( | |
ch, | |
time_embed_dim, | |
dropout, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
), | |
) | |
self.middle_block_out = self.make_zero_conv(ch) | |
self._feature_size += ch | |
def make_zero_conv(self, channels): | |
return TimestepEmbedSequential(zero_module(conv_nd(self.dims, channels, channels, 1, padding=0))) | |
def forward(self, x, hint, timesteps, context, **kwargs): | |
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False) | |
t_emb = t_emb.to(x.dtype) | |
emb = self.time_embed(t_emb) | |
guided_hint = self.input_hint_block(hint, emb, context) | |
outs = [] | |
h = x | |
for module, zero_conv in zip(self.input_blocks, self.zero_convs): | |
if guided_hint is not None: | |
h = module(h, emb, context) | |
h += guided_hint | |
guided_hint = None | |
else: | |
h = module(h, emb, context) | |
outs.append(zero_conv(h, emb, context)) | |
h = self.middle_block(h, emb, context) | |
outs.append(self.middle_block_out(h, emb, context)) | |
return outs | |
def get_device(self): | |
return self.time_embed[0].weight.device | |
def get_dtype(self): | |
return self.time_embed[0].weight.dtype | |
def preprocess(self, x, type='canny', **kwargs): | |
import torchvision.transforms as tvtrans | |
if isinstance(x, str): | |
import PIL.Image | |
device, dtype = self.get_device(), self.get_dtype() | |
x_list = [PIL.Image.open(x)] | |
elif isinstance(x, torch.Tensor): | |
x_list = [tvtrans.ToPILImage()(xi) for xi in x] | |
device, dtype = x.device, x.dtype | |
else: | |
assert False | |
if type == 'none' or type is None: | |
return None | |
elif type in ['input']: | |
y_torch = torch.stack([tvtrans.ToTensor()(xi) for xi in x_list]) | |
y_torch = y_torch.to(device).to(torch.float32) | |
return y_torch | |
elif type in ['canny']: | |
low_threshold = kwargs.pop('low_threshold', 100) | |
high_threshold = kwargs.pop('high_threshold', 200) | |
from .controlnet_annotator.canny import apply_canny | |
y_list = [apply_canny(np.array(xi), low_threshold, high_threshold) for xi in x_list] | |
y_torch = torch.stack([tvtrans.ToTensor()(yi) for yi in y_list]) | |
y_torch = y_torch.repeat(1, 3, 1, 1) # Make is RGB | |
y_torch = y_torch.to(device).to(torch.float32) | |
return y_torch | |
elif type == 'depth': | |
from .controlnet_annotator.midas import apply_midas, unload_midas_model | |
y_list, _ = zip(*[apply_midas(input_image=np.array(xi), a=np.pi*2.0, device=device) for xi in x_list]) | |
y_torch = torch.stack([tvtrans.ToTensor()(yi) for yi in y_list]) | |
y_torch = y_torch.repeat(1, 3, 1, 1) # Make is RGB | |
y_torch = y_torch.to(device).to(torch.float32) | |
unload_midas_model() | |
return y_torch | |
elif type in ['hed']: | |
from .controlnet_annotator.hed import apply_hed, unload_hed_model | |
y_list = [apply_hed(np.array(xi), device=device) for xi in x_list] | |
y_torch = torch.stack([tvtrans.ToTensor()(yi) for yi in y_list]) | |
y_torch = y_torch.repeat(1, 3, 1, 1) # Make is RGB | |
y_torch = y_torch.to(device).to(torch.float32) | |
from .controlnet_annotator.midas import model as model_midas | |
unload_hed_model() | |
return y_torch | |
elif type in ['mlsd', 'mlsd_v11p']: | |
thr_v = kwargs.pop('thr_v', 0.1) | |
thr_d = kwargs.pop('thr_d', 0.1) | |
from .controlnet_annotator.mlsd import apply_mlsd, unload_mlsd_model | |
y_list = [apply_mlsd(np.array(xi), thr_v=thr_v, thr_d=thr_d, device=device) for xi in x_list] | |
y_torch = torch.stack([tvtrans.ToTensor()(yi) for yi in y_list]) | |
y_torch = y_torch.repeat(1, 3, 1, 1) # Make is RGB | |
y_torch = y_torch.to(device).to(torch.float32) | |
unload_mlsd_model() | |
return y_torch | |
elif type == 'normal': | |
bg_th = kwargs.pop('bg_th', 0.4) | |
from .controlnet_annotator.midas import apply_midas, unload_midas_model | |
_, y_list = zip(*[apply_midas(input_image=np.array(xi), a=np.pi*2.0, bg_th=bg_th, device=device) for xi in x_list]) | |
y_torch = torch.stack([tvtrans.ToTensor()(yi.copy()) for yi in y_list]) | |
unload_midas_model() | |
return y_torch | |
elif type in ['openpose']: | |
from .controlnet_annotator.openpose import OpenposeModel | |
from functools import partial | |
wrapper = OpenposeModel() | |
apply_openpose = partial( | |
wrapper.run_model, include_body=True, include_hand=False, include_face=False, | |
json_pose_callback=None, device=device) | |
y_list = [apply_openpose(np.array(xi)) for xi in x_list] | |
y_torch = torch.stack([tvtrans.ToTensor()(yi.copy()) for yi in y_list]) | |
y_torch = y_torch.to(device).to(torch.float32) | |
wrapper.unload() | |
return y_torch | |
elif type in ['openpose_withface']: | |
from .controlnet_annotator.openpose import OpenposeModel | |
from functools import partial | |
wrapper = OpenposeModel() | |
apply_openpose = partial( | |
wrapper.run_model, include_body=True, include_hand=False, include_face=True, | |
json_pose_callback=None, device=device) | |
y_list = [apply_openpose(np.array(xi)) for xi in x_list] | |
y_torch = torch.stack([tvtrans.ToTensor()(yi.copy()) for yi in y_list]) | |
y_torch = y_torch.to(device).to(torch.float32) | |
wrapper.unload() | |
return y_torch | |
elif type in ['openpose_withfacehand']: | |
from .controlnet_annotator.openpose import OpenposeModel | |
from functools import partial | |
wrapper = OpenposeModel() | |
apply_openpose = partial( | |
wrapper.run_model, include_body=True, include_hand=True, include_face=True, | |
json_pose_callback=None, device=device) | |
y_list = [apply_openpose(np.array(xi)) for xi in x_list] | |
y_torch = torch.stack([tvtrans.ToTensor()(yi.copy()) for yi in y_list]) | |
y_torch = y_torch.to(device).to(torch.float32) | |
wrapper.unload() | |
return y_torch | |
elif type == 'scribble': | |
method = kwargs.pop('method', 'pidinet') | |
import cv2 | |
def nms(x, t, s): | |
x = cv2.GaussianBlur(x.astype(np.float32), (0, 0), s) | |
f1 = np.array([[0, 0, 0], [1, 1, 1], [0, 0, 0]], dtype=np.uint8) | |
f2 = np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], dtype=np.uint8) | |
f3 = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.uint8) | |
f4 = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=np.uint8) | |
y = np.zeros_like(x) | |
for f in [f1, f2, f3, f4]: | |
np.putmask(y, cv2.dilate(x, kernel=f) == x, x) | |
z = np.zeros_like(y, dtype=np.uint8) | |
z[y > t] = 255 | |
return z | |
def make_scribble(result): | |
result = nms(result, 127, 3.0) | |
result = cv2.GaussianBlur(result, (0, 0), 3.0) | |
result[result > 4] = 255 | |
result[result < 255] = 0 | |
return result | |
if method == 'hed': | |
from .controlnet_annotator.hed import apply_hed, unload_hed_model | |
y_list = [apply_hed(np.array(xi), device=device) for xi in x_list] | |
y_list = [make_scribble(yi) for yi in y_list] | |
y_torch = torch.stack([tvtrans.ToTensor()(yi) for yi in y_list]) | |
y_torch = y_torch.repeat(1, 3, 1, 1) # Make is RGB | |
y_torch = y_torch.to(device).to(torch.float32) | |
unload_hed_model() | |
return y_torch | |
elif method == 'pidinet': | |
from .controlnet_annotator.pidinet import apply_pidinet, unload_pid_model | |
y_list = [apply_pidinet(np.array(xi), device=device) for xi in x_list] | |
y_list = [make_scribble(yi) for yi in y_list] | |
y_torch = torch.stack([tvtrans.ToTensor()(yi) for yi in y_list]) | |
y_torch = y_torch.repeat(1, 3, 1, 1) # Make is RGB | |
y_torch = y_torch.to(device).to(torch.float32) | |
unload_pid_model() | |
return y_torch | |
elif method == 'xdog': | |
threshold = kwargs.pop('threshold', 32) | |
def apply_scribble_xdog(img): | |
g1 = cv2.GaussianBlur(img.astype(np.float32), (0, 0), 0.5) | |
g2 = cv2.GaussianBlur(img.astype(np.float32), (0, 0), 5.0) | |
dog = (255 - np.min(g2 - g1, axis=2)).clip(0, 255).astype(np.uint8) | |
result = np.zeros_like(img, dtype=np.uint8) | |
result[2 * (255 - dog) > threshold] = 255 | |
return result | |
y_list = [apply_scribble_xdog(np.array(xi), device=device) for xi in x_list] | |
y_torch = torch.stack([tvtrans.ToTensor()(yi) for yi in y_list]) | |
y_torch = y_torch.repeat(1, 3, 1, 1) # Make is RGB | |
y_torch = y_torch.to(device).to(torch.float32) | |
return y_torch | |
else: | |
raise ValueError | |
elif type == 'seg': | |
assert False, "This part is broken" | |
# method = kwargs.pop('method', 'ufade20k') | |
# if method == 'ufade20k': | |
# from .controlnet_annotator.uniformer import apply_uniformer | |
# y_list = [apply_uniformer(np.array(xi), palette='ade20k', device=device) for xi in x_list] | |
# y_torch = torch.stack([tvtrans.ToTensor()(yi) for yi in y_list]) | |
# y_torch = y_torch.to(device).to(torch.float32) | |
# return y_torch | |
# else: | |
# raise ValueError | |