# ------------------------------------------------------------------------
# Modified from Grounded-SAM (https://github.com/IDEA-Research/Grounded-Segment-Anything)
# ------------------------------------------------------------------------
import os
import sys
import random
import warnings
os.system("export BUILD_WITH_CUDA=True")
os.system("python -m pip install -e segment-anything")
os.system("python -m pip install -e GroundingDINO")
os.system("pip install --upgrade diffusers[torch]")
#os.system("pip install opencv-python pycocotools matplotlib")
sys.path.insert(0, './GroundingDINO')
sys.path.insert(0, './segment-anything')
warnings.filterwarnings("ignore")
import cv2
from scipy import ndimage
import gradio as gr
import argparse
import numpy as np
import torch
from torch.nn import functional as F
import torchvision
import networks
import utils
# Grounding DINO
from groundingdino.util.inference import Model
# SAM
from segment_anything.utils.transforms import ResizeLongestSide
# SD
from diffusers import StableDiffusionPipeline
transform = ResizeLongestSide(1024)
# Green Screen
PALETTE_back = (51, 255, 146)
GROUNDING_DINO_CONFIG_PATH = "GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py"
GROUNDING_DINO_CHECKPOINT_PATH = "checkpoints/groundingdino_swint_ogc.pth"
mam_checkpoint="checkpoints/mam_sam_vitb.pth"
output_dir="outputs"
device = 'cuda'
background_list = os.listdir('assets/backgrounds')
#groundingdino_model = None
#mam_predictor = None
#generator = None
# initialize MAM
mam_model = networks.get_generator_m2m(seg='sam', m2m='sam_decoder_deep')
mam_model.to(device)
checkpoint = torch.load(mam_checkpoint, map_location=device)
mam_model.load_state_dict(utils.remove_prefix_state_dict(checkpoint['state_dict']), strict=True)
mam_model = mam_model.eval()
# initialize GroundingDINO
grounding_dino_model = Model(model_config_path=GROUNDING_DINO_CONFIG_PATH, model_checkpoint_path=GROUNDING_DINO_CHECKPOINT_PATH, device=device)
# initialize StableDiffusionPipeline
generator = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
generator.to(device)
def run_grounded_sam(input_image, text_prompt, task_type, background_prompt, background_type, box_threshold, text_threshold, iou_threshold, scribble_mode, guidance_mode):
#global groundingdino_model, sam_predictor, generator
# make dir
os.makedirs(output_dir, exist_ok=True)
#if mam_predictor is None:
# initialize MAM
# build model
# mam_model = networks.get_generator_m2m(seg='sam', m2m='sam_decoder_deep')
# mam_model.to(device)
# load checkpoint
# checkpoint = torch.load(mam_checkpoint, map_location=device)
# mam_model.load_state_dict(utils.remove_prefix_state_dict(checkpoint['state_dict']), strict=True)
# inference
# mam_model = mam_model.eval()
#if groundingdino_model is None:
# grounding_dino_model = Model(model_config_path=GROUNDING_DINO_CONFIG_PATH, model_checkpoint_path=GROUNDING_DINO_CHECKPOINT_PATH, device=device)
#if generator is None:
# generator = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16)
# generator.to(device)
# load image
image_ori = input_image["image"]
scribble = input_image["mask"]
original_size = image_ori.shape[:2]
if task_type == 'text':
if text_prompt is None:
print('Please input non-empty text prompt')
with torch.no_grad():
detections, phrases = grounding_dino_model.predict_with_caption(
image=cv2.cvtColor(image_ori, cv2.COLOR_RGB2BGR),
caption=text_prompt,
box_threshold=box_threshold,
text_threshold=text_threshold
)
if len(detections.xyxy) > 1:
nms_idx = torchvision.ops.nms(
torch.from_numpy(detections.xyxy),
torch.from_numpy(detections.confidence),
iou_threshold,
).numpy().tolist()
detections.xyxy = detections.xyxy[nms_idx]
detections.confidence = detections.confidence[nms_idx]
bbox = detections.xyxy[np.argmax(detections.confidence)]
bbox = transform.apply_boxes(bbox, original_size)
bbox = torch.as_tensor(bbox, dtype=torch.float).to(device)
image = transform.apply_image(image_ori)
image = torch.as_tensor(image).to(device)
image = image.permute(2, 0, 1).contiguous()
pixel_mean = torch.tensor([123.675, 116.28, 103.53]).view(3,1,1).to(device)
pixel_std = torch.tensor([58.395, 57.12, 57.375]).view(3,1,1).to(device)
image = (image - pixel_mean) / pixel_std
h, w = image.shape[-2:]
pad_size = image.shape[-2:]
padh = 1024 - h
padw = 1024 - w
image = F.pad(image, (0, padw, 0, padh))
if task_type == 'scribble_point':
scribble = scribble.transpose(2, 1, 0)[0]
labeled_array, num_features = ndimage.label(scribble >= 255)
centers = ndimage.center_of_mass(scribble, labeled_array, range(1, num_features+1))
centers = np.array(centers)
### (x,y)
centers = transform.apply_coords(centers, original_size)
point_coords = torch.from_numpy(centers).to(device)
point_coords = point_coords.unsqueeze(0).to(device)
point_labels = torch.from_numpy(np.array([1] * len(centers))).unsqueeze(0).to(device)
if scribble_mode == 'split':
point_coords = point_coords.permute(1, 0, 2)
point_labels = point_labels.permute(1, 0)
sample = {'image': image.unsqueeze(0), 'point': point_coords, 'label': point_labels, 'ori_shape': original_size, 'pad_shape': pad_size}
elif task_type == 'scribble_box':
scribble = scribble.transpose(2, 1, 0)[0]
labeled_array, num_features = ndimage.label(scribble >= 255)
centers = ndimage.center_of_mass(scribble, labeled_array, range(1, num_features+1))
centers = np.array(centers)
### (x1, y1, x2, y2)
x_min = centers[:, 0].min()
x_max = centers[:, 0].max()
y_min = centers[:, 1].min()
y_max = centers[:, 1].max()
bbox = np.array([x_min, y_min, x_max, y_max])
bbox = transform.apply_boxes(bbox, original_size)
bbox = torch.as_tensor(bbox, dtype=torch.float).to(device)
sample = {'image': image.unsqueeze(0), 'bbox': bbox.unsqueeze(0), 'ori_shape': original_size, 'pad_shape': pad_size}
elif task_type == 'text':
sample = {'image': image.unsqueeze(0), 'bbox': bbox.unsqueeze(0), 'ori_shape': original_size, 'pad_shape': pad_size}
else:
print("task_type:{} error!".format(task_type))
with torch.no_grad():
feas, pred, post_mask = mam_model.forward_inference(sample)
alpha_pred_os1, alpha_pred_os4, alpha_pred_os8 = pred['alpha_os1'], pred['alpha_os4'], pred['alpha_os8']
alpha_pred_os8 = alpha_pred_os8[..., : sample['pad_shape'][0], : sample['pad_shape'][1]]
alpha_pred_os4 = alpha_pred_os4[..., : sample['pad_shape'][0], : sample['pad_shape'][1]]
alpha_pred_os1 = alpha_pred_os1[..., : sample['pad_shape'][0], : sample['pad_shape'][1]]
alpha_pred_os8 = F.interpolate(alpha_pred_os8, sample['ori_shape'], mode="bilinear", align_corners=False)
alpha_pred_os4 = F.interpolate(alpha_pred_os4, sample['ori_shape'], mode="bilinear", align_corners=False)
alpha_pred_os1 = F.interpolate(alpha_pred_os1, sample['ori_shape'], mode="bilinear", align_corners=False)
if guidance_mode == 'mask':
weight_os8 = utils.get_unknown_tensor_from_mask_oneside(post_mask, rand_width=10, train_mode=False)
post_mask[weight_os8>0] = alpha_pred_os8[weight_os8>0]
alpha_pred = post_mask.clone().detach()
else:
weight_os8 = utils.get_unknown_box_from_mask(post_mask)
alpha_pred_os8[weight_os8>0] = post_mask[weight_os8>0]
alpha_pred = alpha_pred_os8.clone().detach()
weight_os4 = utils.get_unknown_tensor_from_pred_oneside(alpha_pred, rand_width=20, train_mode=False)
alpha_pred[weight_os4>0] = alpha_pred_os4[weight_os4>0]
weight_os1 = utils.get_unknown_tensor_from_pred_oneside(alpha_pred, rand_width=10, train_mode=False)
alpha_pred[weight_os1>0] = alpha_pred_os1[weight_os1>0]
alpha_pred = alpha_pred[0][0].cpu().numpy()
#### draw
### alpha matte
alpha_rgb = cv2.cvtColor(np.uint8(alpha_pred*255), cv2.COLOR_GRAY2RGB)
### com img with background
if background_type == 'real_world_sample':
background_img_file = os.path.join('assets/backgrounds', random.choice(background_list))
background_img = cv2.imread(background_img_file)
background_img = cv2.cvtColor(background_img, cv2.COLOR_BGR2RGB)
background_img = cv2.resize(background_img, (image_ori.shape[1], image_ori.shape[0]))
com_img = alpha_pred[..., None] * image_ori + (1 - alpha_pred[..., None]) * np.uint8(background_img)
com_img = np.uint8(com_img)
else:
if background_prompt is None:
print('Please input non-empty background prompt')
else:
background_img = generator(background_prompt).images[0]
background_img = np.array(background_img)
background_img = cv2.resize(background_img, (image_ori.shape[1], image_ori.shape[0]))
com_img = alpha_pred[..., None] * image_ori + (1 - alpha_pred[..., None]) * np.uint8(background_img)
com_img = np.uint8(com_img)
### com img with green screen
green_img = alpha_pred[..., None] * image_ori + (1 - alpha_pred[..., None]) * np.array([PALETTE_back], dtype='uint8')
green_img = np.uint8(green_img)
return [(com_img, 'composite with background'), (green_img, 'green screen'), (alpha_rgb, 'alpha matte')]
if __name__ == "__main__":
parser = argparse.ArgumentParser("MAM demo", add_help=True)
parser.add_argument("--debug", action="store_true", help="using debug mode")
parser.add_argument("--share", action="store_true", help="share the app")
parser.add_argument('--port', type=int, default=7589, help='port to run the server')
parser.add_argument('--no-gradio-queue', action="store_true", help='path to the SAM checkpoint')
args = parser.parse_args()
print(args)
block = gr.Blocks()
if not args.no_gradio_queue:
block = block.queue()
with block:
gr.Markdown(
"""
# MAM Demo
Welcome to the MAM demo and upload your image to get started
You may select different prompt types to get the alpha matte of target instance, and select different backgrounds for image composition.
## Usage
You may check the video to see how to play with the demo, or check the details below.
You may upload an image to start, we support 3 prompt types to get the alpha matte of the target instanceļ¼
**scribble_point**: Click an point on the target instance.
**scribble_box**: Click on two points, the top-left point and the bottom-right point to represent a bounding box of the target instance.
**text**: Send text prompt to identify the target instance in the `Text prompt` box.
We also support 2 background types to support image composition with the alpha matte output:
**real_world_sample**: Randomly select a real-world image from `assets/backgrounds` for composition.
**generated_by_text**: Send background text prompt to create a background image with stable diffusion model in the `Background prompt` box.
""")
with gr.Row():
with gr.Column():
input_image = gr.Image(source='upload', type="numpy", value="assets/demo.jpg", tool="sketch")
task_type = gr.Dropdown(["scribble_point", "scribble_box", "text"], value="text", label="Prompt type")
text_prompt = gr.Textbox(label="Text prompt", placeholder="the girl in the middle")
background_type = gr.Dropdown(["generated_by_text", "real_world_sample"], value="generated_by_text", label="Background type")
background_prompt = gr.Textbox(label="Background prompt", placeholder="downtown area in New York")
run_button = gr.Button(label="Run")
with gr.Accordion("Advanced options", open=False):
box_threshold = gr.Slider(
label="Box Threshold", minimum=0.0, maximum=1.0, value=0.25, step=0.05
)
text_threshold = gr.Slider(
label="Text Threshold", minimum=0.0, maximum=1.0, value=0.25, step=0.05
)
iou_threshold = gr.Slider(
label="IOU Threshold", minimum=0.0, maximum=1.0, value=0.5, step=0.05
)
scribble_mode = gr.Dropdown(
["merge", "split"], value="split", label="scribble_mode"
)
guidance_mode = gr.Dropdown(
["mask", "alpha"], value="alpha", label="guidance_mode", info="mask guidance is for complex scenes with multiple instances, alpha guidance is for simple scene with single instance"
)
with gr.Column():
gallery = gr.Gallery(
label="Generated images", show_label=True, elem_id="gallery"
).style(preview=True, grid=3, object_fit="scale-down")
run_button.click(fn=run_grounded_sam, inputs=[
input_image, text_prompt, task_type, background_prompt, background_type, box_threshold, text_threshold, iou_threshold, scribble_mode, guidance_mode], outputs=gallery)
block.launch(debug=args.debug, share=args.share, show_error=True)
#block.queue(concurrency_count=100)
#block.launch(server_name='0.0.0.0', server_port=args.port, debug=args.debug, share=args.share)