jiachenl's picture
update hf demo
05ff3be
import os
import cv2
import torch
import logging
import datetime
import numpy as np
from pprint import pprint
from utils import util
from utils.config import CONFIG
from tensorboardX import SummaryWriter
LEVELS = {
"DEBUG": logging.DEBUG,
"INFO": logging.INFO,
"WARNING": logging.WARNING,
"ERROR": logging.ERROR,
"CRITICAL": logging.CRITICAL,
}
def make_color_wheel():
# from https://github.com/JiahuiYu/generative_inpainting/blob/master/inpaint_ops.py
RY, YG, GC, CB, BM, MR = (15, 6, 4, 11, 13, 6)
ncols = RY + YG + GC + CB + BM + MR
colorwheel = np.zeros([ncols, 3])
col = 0
# RY
colorwheel[0:RY, 0] = 255
colorwheel[0:RY, 1] = np.transpose(np.floor(255*np.arange(0, RY) / RY))
col += RY
# YG
colorwheel[col:col+YG, 0] = 255 - np.transpose(np.floor(255*np.arange(0, YG) / YG))
colorwheel[col:col+YG, 1] = 255
col += YG
# GC
colorwheel[col:col+GC, 1] = 255
colorwheel[col:col+GC, 2] = np.transpose(np.floor(255*np.arange(0, GC) / GC))
col += GC
# CB
colorwheel[col:col+CB, 1] = 255 - np.transpose(np.floor(255*np.arange(0, CB) / CB))
colorwheel[col:col+CB, 2] = 255
col += CB
# BM
colorwheel[col:col+BM, 2] = 255
colorwheel[col:col+BM, 0] = np.transpose(np.floor(255*np.arange(0, BM) / BM))
col += + BM
# MR
colorwheel[col:col+MR, 2] = 255 - np.transpose(np.floor(255 * np.arange(0, MR) / MR))
colorwheel[col:col+MR, 0] = 255
return colorwheel
COLORWHEEL = make_color_wheel()
def compute_color(u,v):
# from https://github.com/JiahuiYu/generative_inpainting/blob/master/inpaint_ops.py
h, w = u.shape
img = np.zeros([h, w, 3])
nanIdx = np.isnan(u) | np.isnan(v)
u[nanIdx] = 0
v[nanIdx] = 0
colorwheel = COLORWHEEL
# colorwheel = make_color_wheel()
ncols = np.size(colorwheel, 0)
rad = np.sqrt(u**2+v**2)
a = np.arctan2(-v, -u) / np.pi
fk = (a+1) / 2 * (ncols - 1) + 1
k0 = np.floor(fk).astype(int)
k1 = k0 + 1
k1[k1 == ncols+1] = 1
f = fk - k0
for i in range(np.size(colorwheel,1)):
tmp = colorwheel[:, i]
col0 = tmp[k0-1] / 255
col1 = tmp[k1-1] / 255
col = (1-f) * col0 + f * col1
idx = rad <= 1
col[idx] = 1-rad[idx]*(1-col[idx])
notidx = np.logical_not(idx)
col[notidx] *= 0.75
img[:, :, i] = np.uint8(np.floor(255 * col*(1-nanIdx)))
return img
def flow_to_image(flow):
# part from https://github.com/JiahuiYu/generative_inpainting/blob/master/inpaint_ops.py
maxrad = -1
u = flow[0, :, :]
v = flow[1, :, :]
rad = np.sqrt(u ** 2 + v ** 2)
maxrad = max(maxrad, np.max(rad))
u = u/(maxrad + np.finfo(float).eps)
v = v/(maxrad + np.finfo(float).eps)
img = compute_color(u, v)
return img
def put_text(image, text, position=(10, 20)):
image = cv2.resize(image.transpose([1, 2, 0]), (512, 512), interpolation=cv2.INTER_NEAREST)
return cv2.putText(image, text, position, cv2.FONT_HERSHEY_SIMPLEX, 0.8, 0, thickness=2).transpose([2, 0, 1])
class TensorBoardLogger(object):
def __init__(self, tb_log_dir, exp_string):
"""
Initialize summary writer
"""
self.exp_string = exp_string
self.tb_log_dir = tb_log_dir
self.val_img_dir = os.path.join(self.tb_log_dir, 'val_image')
if CONFIG.local_rank == 0:
util.make_dir(self.tb_log_dir)
util.make_dir(self.val_img_dir)
self.writer = SummaryWriter(self.tb_log_dir+'/' + self.exp_string)
else:
self.writer = None
def scalar_summary(self, tag, value, step, phase='train'):
if CONFIG.local_rank == 0:
sum_name = '{}/{}'.format(phase.capitalize(), tag)
self.writer.add_scalar(sum_name, value, step)
def image_summary(self, image_set, step, phase='train', save_val=True):
"""
Record image in tensorboard
The input image should be a numpy array with shape (C, H, W) like a torch tensor
:param image_set: dict of images
:param step:
:param phase:
:param save_val: save images in folder in validation or testing
:return:
"""
if CONFIG.local_rank == 0:
for tag, image_numpy in image_set.items():
sum_name = '{}/{}'.format(phase.capitalize(), tag)
image_numpy = image_numpy.transpose([1, 2, 0])
image_numpy = cv2.resize(image_numpy, (360, 360), interpolation=cv2.INTER_NEAREST)
if len(image_numpy.shape) == 2:
image_numpy = image_numpy[None, :,:]
else:
image_numpy = image_numpy.transpose([2, 0, 1])
self.writer.add_image(sum_name, image_numpy, step)
if (phase=='test') and save_val:
tags = list(image_set.keys())
image_pack = self._reshape_rgb(image_set[tags[0]])
image_pack = cv2.resize(image_pack, (512, 512), interpolation=cv2.INTER_NEAREST)
for tag in tags[1:]:
image = self._reshape_rgb(image_set[tag])
image = cv2.resize(image, (512, 512), interpolation=cv2.INTER_NEAREST)
image_pack = np.concatenate((image_pack, image), axis=1)
cv2.imwrite(os.path.join(self.val_img_dir, 'val_{:d}'.format(step)+'.png'), image_pack)
@staticmethod
def _reshape_rgb(image):
"""
Transform RGB/L -> BGR for OpenCV
"""
if len(image.shape) == 3 and image.shape[0] == 3:
image = image.transpose([1, 2, 0])
image = image[...,::-1]
elif len(image.shape) == 3 and image.shape[0] == 1:
image = image.transpose([1, 2, 0])
image = np.repeat(image, 3, axis=2)
elif len(image.shape) == 2:
# image = image.transpose([1,0])
image = np.stack((image, image, image), axis=2)
else:
raise ValueError('Image shape {} not supported to save'.format(image.shape))
return image
def __del__(self):
if self.writer is not None:
self.writer.close()
class MyLogger(logging.Logger):
"""
Only write log in the first subprocess
"""
def __init__(self, *args, **kwargs):
super(MyLogger, self).__init__(*args, **kwargs)
def _log(self, level, msg, args, exc_info=None, extra=None, stack_info=False):
if CONFIG.local_rank == 0:
super()._log(level, msg, args, exc_info, extra, stack_info)
def get_logger(log_dir=None, tb_log_dir=None, logging_level="DEBUG"):
"""
Return a default build-in logger if log_file=None and tb_log_dir=None
Return a build-in logger which dump stdout to log_file if log_file is assigned
Return a build-in logger and tensorboard summary writer if tb_log_dir is assigned
:param log_file: logging file dumped from stdout
:param tb_log_dir: tensorboard dir
:param logging_level:
:return: Logger or [Logger, TensorBoardLogger]
"""
level = LEVELS[logging_level.upper()]
exp_string = datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S")
logging.setLoggerClass(MyLogger)
logger = logging.getLogger('Logger')
logger.setLevel(level)
# create formatter
formatter = logging.Formatter('[%(asctime)s] %(levelname)s: %(message)s', datefmt='%m-%d %H:%M:%S')
# create console handler
ch = logging.StreamHandler()
ch.setLevel(level)
ch.setFormatter(formatter)
# add the handlers to logger
logger.addHandler(ch)
# create file handler
if log_dir is not None and CONFIG.local_rank == 0:
log_file = os.path.join(log_dir, exp_string)
fh = logging.FileHandler(log_file+'.log', mode='w')
fh.setLevel(level)
fh.setFormatter(formatter)
logger.addHandler(fh)
pprint(CONFIG, stream=fh.stream)
# create tensorboard summary writer
if tb_log_dir is not None:
tb_logger = TensorBoardLogger(tb_log_dir=tb_log_dir, exp_string=exp_string)
return logger, tb_logger
else:
return logger
def normalize_image(image):
"""
normalize image array to 0~1
"""
image_flat = torch.flatten(image, start_dim=1)
return (image - image_flat.min(dim=1, keepdim=False)[0].view(3,1,1)) / (
image_flat.max(dim=1, keepdim=False)[0].view(3,1,1) - image_flat.min(dim=1, keepdim=False)[0].view(3,1,1) + 1e-8)