jiachenl's picture
update hf demo
05ff3be
raw
history blame
No virus
13.1 kB
import os
import cv2
import torch
import logging
import numpy as np
from utils.config import CONFIG
import torch.distributed as dist
import torch.nn.functional as F
from skimage.measure import label
import pdb
def make_dir(target_dir):
"""
Create dir if not exists
"""
if not os.path.exists(target_dir):
os.makedirs(target_dir)
def print_network(model, name):
"""
Print out the network information
"""
logger = logging.getLogger("Logger")
num_params = 0
for p in model.parameters():
num_params += p.numel()
logger.info(model)
logger.info(name)
logger.info("Number of parameters: {}".format(num_params))
def update_lr(lr, optimizer):
"""
update learning rates
"""
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def warmup_lr(init_lr, step, iter_num):
"""
Warm up learning rate
"""
return step/iter_num*init_lr
def add_prefix_state_dict(state_dict, prefix="module"):
"""
add prefix from the key of pretrained state dict for Data-Parallel
"""
new_state_dict = {}
first_state_name = list(state_dict.keys())[0]
if not first_state_name.startswith(prefix):
for key, value in state_dict.items():
new_state_dict[prefix+"."+key] = state_dict[key].float()
else:
for key, value in state_dict.items():
new_state_dict[key] = state_dict[key].float()
return new_state_dict
def remove_prefix_state_dict(state_dict, prefix="module"):
"""
remove prefix from the key of pretrained state dict for Data-Parallel
"""
new_state_dict = {}
first_state_name = list(state_dict.keys())[0]
if not first_state_name.startswith(prefix):
for key, value in state_dict.items():
new_state_dict[key] = state_dict[key].float()
else:
for key, value in state_dict.items():
new_state_dict[key[len(prefix)+1:]] = state_dict[key].float()
return new_state_dict
def load_imagenet_pretrain(model, checkpoint_file):
"""
Load imagenet pretrained resnet
Add zeros channel to the first convolution layer
Since we have the spectral normalization, we need to do a little more
"""
checkpoint = torch.load(checkpoint_file, map_location = lambda storage, loc: storage.cuda(CONFIG.gpu))
state_dict = remove_prefix_state_dict(checkpoint['state_dict'])
for key, value in state_dict.items():
state_dict[key] = state_dict[key].float()
logger = logging.getLogger("Logger")
logger.debug("Imagenet pretrained keys:")
logger.debug(state_dict.keys())
logger.debug("Generator keys:")
logger.debug(model.module.encoder.state_dict().keys())
logger.debug("Intersection keys:")
logger.debug(set(model.module.encoder.state_dict().keys())&set(state_dict.keys()))
weight_u = state_dict["conv1.module.weight_u"]
weight_v = state_dict["conv1.module.weight_v"]
weight_bar = state_dict["conv1.module.weight_bar"]
logger.debug("weight_v: {}".format(weight_v))
logger.debug("weight_bar: {}".format(weight_bar.view(32, -1)))
logger.debug("sigma: {}".format(weight_u.dot(weight_bar.view(32, -1).mv(weight_v))))
new_weight_v = torch.zeros((3+CONFIG.model.mask_channel), 3, 3).cuda()
new_weight_bar = torch.zeros(32, (3+CONFIG.model.mask_channel), 3, 3).cuda()
new_weight_v[:3, :, :].copy_(weight_v.view(3, 3, 3))
new_weight_bar[:, :3, :, :].copy_(weight_bar)
logger.debug("new weight_v: {}".format(new_weight_v.view(-1)))
logger.debug("new weight_bar: {}".format(new_weight_bar.view(32, -1)))
logger.debug("new sigma: {}".format(weight_u.dot(new_weight_bar.view(32, -1).mv(new_weight_v.view(-1)))))
state_dict["conv1.module.weight_v"] = new_weight_v.view(-1)
state_dict["conv1.module.weight_bar"] = new_weight_bar
model.module.encoder.load_state_dict(state_dict, strict=False)
def load_imagenet_pretrain_nomask(model, checkpoint_file):
"""
Load imagenet pretrained resnet
Add zeros channel to the first convolution layer
Since we have the spectral normalization, we need to do a little more
"""
checkpoint = torch.load(checkpoint_file, map_location = lambda storage, loc: storage.cuda(CONFIG.gpu))
state_dict = remove_prefix_state_dict(checkpoint['state_dict'])
for key, value in state_dict.items():
state_dict[key] = state_dict[key].float()
logger = logging.getLogger("Logger")
logger.debug("Imagenet pretrained keys:")
logger.debug(state_dict.keys())
logger.debug("Generator keys:")
logger.debug(model.module.encoder.state_dict().keys())
logger.debug("Intersection keys:")
logger.debug(set(model.module.encoder.state_dict().keys())&set(state_dict.keys()))
#weight_u = state_dict["conv1.module.weight_u"]
#weight_v = state_dict["conv1.module.weight_v"]
#weight_bar = state_dict["conv1.module.weight_bar"]
#logger.debug("weight_v: {}".format(weight_v))
#logger.debug("weight_bar: {}".format(weight_bar.view(32, -1)))
#logger.debug("sigma: {}".format(weight_u.dot(weight_bar.view(32, -1).mv(weight_v))))
#new_weight_v = torch.zeros((3+CONFIG.model.mask_channel), 3, 3).cuda()
#new_weight_bar = torch.zeros(32, (3+CONFIG.model.mask_channel), 3, 3).cuda()
#new_weight_v[:3, :, :].copy_(weight_v.view(3, 3, 3))
#new_weight_bar[:, :3, :, :].copy_(weight_bar)
#logger.debug("new weight_v: {}".format(new_weight_v.view(-1)))
#logger.debug("new weight_bar: {}".format(new_weight_bar.view(32, -1)))
#logger.debug("new sigma: {}".format(weight_u.dot(new_weight_bar.view(32, -1).mv(new_weight_v.view(-1)))))
#state_dict["conv1.module.weight_v"] = new_weight_v.view(-1)
#state_dict["conv1.module.weight_bar"] = new_weight_bar
model.module.encoder.load_state_dict(state_dict, strict=False)
def load_VGG_pretrain(model, checkpoint_file):
"""
Load imagenet pretrained resnet
Add zeros channel to the first convolution layer
Since we have the spectral normalization, we need to do a little more
"""
checkpoint = torch.load(checkpoint_file, map_location = lambda storage, loc: storage.cuda())
backbone_state_dict = remove_prefix_state_dict(checkpoint['state_dict'])
model.module.encoder.load_state_dict(backbone_state_dict, strict=False)
def get_unknown_tensor(trimap):
"""
get 1-channel unknown area tensor from the 3-channel/1-channel trimap tensor
"""
if trimap.shape[1] == 3:
weight = trimap[:, 1:2, :, :].float()
else:
weight = trimap.eq(1).float()
return weight
def get_gaborfilter(angles):
"""
generate gabor filter as the conv kernel
:param angles: number of different angles
"""
gabor_filter = []
for angle in range(angles):
gabor_filter.append(cv2.getGaborKernel(ksize=(5,5), sigma=0.5, theta=angle*np.pi/8, lambd=5, gamma=0.5))
gabor_filter = np.array(gabor_filter)
gabor_filter = np.expand_dims(gabor_filter, axis=1)
return gabor_filter.astype(np.float32)
def get_gradfilter():
"""
generate gradient filter as the conv kernel
"""
grad_filter = []
grad_filter.append([[-1, -2, -1], [0, 0, 0], [1, 2, 1]])
grad_filter.append([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]])
grad_filter = np.array(grad_filter)
grad_filter = np.expand_dims(grad_filter, axis=1)
return grad_filter.astype(np.float32)
def reduce_tensor_dict(tensor_dict, mode='mean'):
"""
average tensor dict over different GPUs
"""
for key, tensor in tensor_dict.items():
if tensor is not None:
tensor_dict[key] = reduce_tensor(tensor, mode)
return tensor_dict
def reduce_tensor(tensor, mode='mean'):
"""
average tensor over different GPUs
"""
rt = tensor.clone()
dist.all_reduce(rt, op=dist.ReduceOp.SUM)
if mode == 'mean':
rt /= CONFIG.world_size
elif mode == 'sum':
pass
else:
raise NotImplementedError("reduce mode can only be 'mean' or 'sum'")
return rt
### preprocess the image and mask for inference (np array), crop based on ROI
def preprocess(image, mask, thres):
mask_ = (mask >= thres).astype(np.float32)
arr = np.nonzero(mask_)
h, w = mask.shape
bbox = [max(0, int(min(arr[0]) - 0.1*h)),
min(h, int(max(arr[0]) + 0.1*h)),
max(0, int(min(arr[1]) - 0.1*w)),
min(w, int(max(arr[1]) + 0.1*w))]
image = image[bbox[0]:bbox[1], bbox[2]:bbox[3], :]
mask = mask[bbox[0]:bbox[1], bbox[2]:bbox[3]]
return image, mask, bbox
### postprocess the alpha prediction to keep the largest connected component (np array) and uncrop, alpha in [0, 1]
### based on https://github.com/senguptaumd/Background-Matting/blob/master/test_background-matting_image.py
def postprocess(alpha, orih=None, oriw=None, bbox=None):
labels=label((alpha>0.05).astype(int))
try:
assert( labels.max() != 0 )
except:
return None
largestCC = labels == np.argmax(np.bincount(labels.flat)[1:])+1
alpha = alpha * largestCC
if bbox is None:
return alpha
else:
ori_alpha = np.zeros(shape=[orih, oriw], dtype=np.float32)
ori_alpha[bbox[0]:bbox[1], bbox[2]:bbox[3]] = alpha
return ori_alpha
Kernels = [None] + [cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (size, size)) for size in range(1,30)]
def get_unknown_tensor_from_pred(pred, rand_width=30, train_mode=True):
### pred: N, 1 ,H, W
N, C, H, W = pred.shape
pred = pred.data.cpu().numpy()
uncertain_area = np.ones_like(pred, dtype=np.uint8)
uncertain_area[pred<1.0/255.0] = 0
uncertain_area[pred>1-1.0/255.0] = 0
for n in range(N):
uncertain_area_ = uncertain_area[n,0,:,:] # H, W
if train_mode:
width = np.random.randint(1, rand_width)
else:
width = rand_width // 2
uncertain_area_ = cv2.dilate(uncertain_area_, Kernels[width])
uncertain_area[n,0,:,:] = uncertain_area_
weight = np.zeros_like(uncertain_area)
weight[uncertain_area == 1] = 1
weight = torch.from_numpy(weight).cuda()
return weight
def get_unknown_tensor_from_pred_oneside(pred, rand_width=30, train_mode=True):
### pred: N, 1 ,H, W
N, C, H, W = pred.shape
pred = pred.data.cpu().numpy()
uncertain_area = np.ones_like(pred, dtype=np.uint8)
uncertain_area[pred<1.0/255.0] = 0
#uncertain_area[pred>1-1.0/255.0] = 0
for n in range(N):
uncertain_area_ = uncertain_area[n,0,:,:] # H, W
if train_mode:
width = np.random.randint(1, rand_width)
else:
width = rand_width // 2
uncertain_area_ = cv2.dilate(uncertain_area_, Kernels[width])
uncertain_area[n,0,:,:] = uncertain_area_
uncertain_area[pred>1-1.0/255.0] = 0
#weight = np.zeros_like(uncertain_area)
#weight[uncertain_area == 1] = 1
weight = torch.from_numpy(uncertain_area).cuda()
return weight
Kernels_mask = [None] + [cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (size, size)) for size in range(1,30)]
def get_unknown_tensor_from_mask(mask, rand_width=30, train_mode=True):
"""
get 1-channel unknown area tensor from the 3-channel/1-channel trimap tensor
"""
N, C, H, W = mask.shape
mask_c = mask.data.cpu().numpy().astype(np.uint8)
weight = np.ones_like(mask_c, dtype=np.uint8)
for n in range(N):
if train_mode:
width = np.random.randint(rand_width // 2, rand_width)
else:
width = rand_width // 2
fg_mask = cv2.erode(mask_c[n,0], Kernels_mask[width])
bg_mask = cv2.erode(1 - mask_c[n,0], Kernels_mask[width])
weight[n,0][fg_mask==1] = 0
weight[n,0][bg_mask==1] = 0
weight = torch.from_numpy(weight).cuda()
return weight
def get_unknown_tensor_from_mask_oneside(mask, rand_width=30, train_mode=True):
"""
get 1-channel unknown area tensor from the 3-channel/1-channel trimap tensor
"""
N, C, H, W = mask.shape
mask_c = mask.data.cpu().numpy().astype(np.uint8)
weight = np.ones_like(mask_c, dtype=np.uint8)
for n in range(N):
if train_mode:
width = np.random.randint(rand_width // 2, rand_width)
else:
width = rand_width // 2
#fg_mask = cv2.erode(mask_c[n,0], Kernels_mask[width])
fg_mask = mask_c[n,0]
bg_mask = cv2.erode(1 - mask_c[n,0], Kernels_mask[width])
weight[n,0][fg_mask==1] = 0
weight[n,0][bg_mask==1] = 0
weight = torch.from_numpy(weight).cuda()
return weight
def get_unknown_box_from_mask(mask):
"""
get 1-channel unknown area tensor from the 3-channel/1-channel trimap tensor
"""
N, C, H, W = mask.shape
mask_c = mask.data.cpu().numpy().astype(np.uint8)
weight = np.ones_like(mask_c, dtype=np.uint8)
fg_set = np.where(mask_c[0][0] != 0)
x_min = np.min(fg_set[1])
x_max = np.max(fg_set[1])
y_min = np.min(fg_set[0])
y_max = np.max(fg_set[0])
weight[0, 0, y_min:y_max, x_min:x_max] = 0
weight = torch.from_numpy(weight).cuda()
return weight