Spaces:
Runtime error
Runtime error
File size: 8,501 Bytes
05ff3be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
import os
import cv2
import torch
import logging
import datetime
import numpy as np
from pprint import pprint
from utils import util
from utils.config import CONFIG
from tensorboardX import SummaryWriter
LEVELS = {
"DEBUG": logging.DEBUG,
"INFO": logging.INFO,
"WARNING": logging.WARNING,
"ERROR": logging.ERROR,
"CRITICAL": logging.CRITICAL,
}
def make_color_wheel():
# from https://github.com/JiahuiYu/generative_inpainting/blob/master/inpaint_ops.py
RY, YG, GC, CB, BM, MR = (15, 6, 4, 11, 13, 6)
ncols = RY + YG + GC + CB + BM + MR
colorwheel = np.zeros([ncols, 3])
col = 0
# RY
colorwheel[0:RY, 0] = 255
colorwheel[0:RY, 1] = np.transpose(np.floor(255*np.arange(0, RY) / RY))
col += RY
# YG
colorwheel[col:col+YG, 0] = 255 - np.transpose(np.floor(255*np.arange(0, YG) / YG))
colorwheel[col:col+YG, 1] = 255
col += YG
# GC
colorwheel[col:col+GC, 1] = 255
colorwheel[col:col+GC, 2] = np.transpose(np.floor(255*np.arange(0, GC) / GC))
col += GC
# CB
colorwheel[col:col+CB, 1] = 255 - np.transpose(np.floor(255*np.arange(0, CB) / CB))
colorwheel[col:col+CB, 2] = 255
col += CB
# BM
colorwheel[col:col+BM, 2] = 255
colorwheel[col:col+BM, 0] = np.transpose(np.floor(255*np.arange(0, BM) / BM))
col += + BM
# MR
colorwheel[col:col+MR, 2] = 255 - np.transpose(np.floor(255 * np.arange(0, MR) / MR))
colorwheel[col:col+MR, 0] = 255
return colorwheel
COLORWHEEL = make_color_wheel()
def compute_color(u,v):
# from https://github.com/JiahuiYu/generative_inpainting/blob/master/inpaint_ops.py
h, w = u.shape
img = np.zeros([h, w, 3])
nanIdx = np.isnan(u) | np.isnan(v)
u[nanIdx] = 0
v[nanIdx] = 0
colorwheel = COLORWHEEL
# colorwheel = make_color_wheel()
ncols = np.size(colorwheel, 0)
rad = np.sqrt(u**2+v**2)
a = np.arctan2(-v, -u) / np.pi
fk = (a+1) / 2 * (ncols - 1) + 1
k0 = np.floor(fk).astype(int)
k1 = k0 + 1
k1[k1 == ncols+1] = 1
f = fk - k0
for i in range(np.size(colorwheel,1)):
tmp = colorwheel[:, i]
col0 = tmp[k0-1] / 255
col1 = tmp[k1-1] / 255
col = (1-f) * col0 + f * col1
idx = rad <= 1
col[idx] = 1-rad[idx]*(1-col[idx])
notidx = np.logical_not(idx)
col[notidx] *= 0.75
img[:, :, i] = np.uint8(np.floor(255 * col*(1-nanIdx)))
return img
def flow_to_image(flow):
# part from https://github.com/JiahuiYu/generative_inpainting/blob/master/inpaint_ops.py
maxrad = -1
u = flow[0, :, :]
v = flow[1, :, :]
rad = np.sqrt(u ** 2 + v ** 2)
maxrad = max(maxrad, np.max(rad))
u = u/(maxrad + np.finfo(float).eps)
v = v/(maxrad + np.finfo(float).eps)
img = compute_color(u, v)
return img
def put_text(image, text, position=(10, 20)):
image = cv2.resize(image.transpose([1, 2, 0]), (512, 512), interpolation=cv2.INTER_NEAREST)
return cv2.putText(image, text, position, cv2.FONT_HERSHEY_SIMPLEX, 0.8, 0, thickness=2).transpose([2, 0, 1])
class TensorBoardLogger(object):
def __init__(self, tb_log_dir, exp_string):
"""
Initialize summary writer
"""
self.exp_string = exp_string
self.tb_log_dir = tb_log_dir
self.val_img_dir = os.path.join(self.tb_log_dir, 'val_image')
if CONFIG.local_rank == 0:
util.make_dir(self.tb_log_dir)
util.make_dir(self.val_img_dir)
self.writer = SummaryWriter(self.tb_log_dir+'/' + self.exp_string)
else:
self.writer = None
def scalar_summary(self, tag, value, step, phase='train'):
if CONFIG.local_rank == 0:
sum_name = '{}/{}'.format(phase.capitalize(), tag)
self.writer.add_scalar(sum_name, value, step)
def image_summary(self, image_set, step, phase='train', save_val=True):
"""
Record image in tensorboard
The input image should be a numpy array with shape (C, H, W) like a torch tensor
:param image_set: dict of images
:param step:
:param phase:
:param save_val: save images in folder in validation or testing
:return:
"""
if CONFIG.local_rank == 0:
for tag, image_numpy in image_set.items():
sum_name = '{}/{}'.format(phase.capitalize(), tag)
image_numpy = image_numpy.transpose([1, 2, 0])
image_numpy = cv2.resize(image_numpy, (360, 360), interpolation=cv2.INTER_NEAREST)
if len(image_numpy.shape) == 2:
image_numpy = image_numpy[None, :,:]
else:
image_numpy = image_numpy.transpose([2, 0, 1])
self.writer.add_image(sum_name, image_numpy, step)
if (phase=='test') and save_val:
tags = list(image_set.keys())
image_pack = self._reshape_rgb(image_set[tags[0]])
image_pack = cv2.resize(image_pack, (512, 512), interpolation=cv2.INTER_NEAREST)
for tag in tags[1:]:
image = self._reshape_rgb(image_set[tag])
image = cv2.resize(image, (512, 512), interpolation=cv2.INTER_NEAREST)
image_pack = np.concatenate((image_pack, image), axis=1)
cv2.imwrite(os.path.join(self.val_img_dir, 'val_{:d}'.format(step)+'.png'), image_pack)
@staticmethod
def _reshape_rgb(image):
"""
Transform RGB/L -> BGR for OpenCV
"""
if len(image.shape) == 3 and image.shape[0] == 3:
image = image.transpose([1, 2, 0])
image = image[...,::-1]
elif len(image.shape) == 3 and image.shape[0] == 1:
image = image.transpose([1, 2, 0])
image = np.repeat(image, 3, axis=2)
elif len(image.shape) == 2:
# image = image.transpose([1,0])
image = np.stack((image, image, image), axis=2)
else:
raise ValueError('Image shape {} not supported to save'.format(image.shape))
return image
def __del__(self):
if self.writer is not None:
self.writer.close()
class MyLogger(logging.Logger):
"""
Only write log in the first subprocess
"""
def __init__(self, *args, **kwargs):
super(MyLogger, self).__init__(*args, **kwargs)
def _log(self, level, msg, args, exc_info=None, extra=None, stack_info=False):
if CONFIG.local_rank == 0:
super()._log(level, msg, args, exc_info, extra, stack_info)
def get_logger(log_dir=None, tb_log_dir=None, logging_level="DEBUG"):
"""
Return a default build-in logger if log_file=None and tb_log_dir=None
Return a build-in logger which dump stdout to log_file if log_file is assigned
Return a build-in logger and tensorboard summary writer if tb_log_dir is assigned
:param log_file: logging file dumped from stdout
:param tb_log_dir: tensorboard dir
:param logging_level:
:return: Logger or [Logger, TensorBoardLogger]
"""
level = LEVELS[logging_level.upper()]
exp_string = datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S")
logging.setLoggerClass(MyLogger)
logger = logging.getLogger('Logger')
logger.setLevel(level)
# create formatter
formatter = logging.Formatter('[%(asctime)s] %(levelname)s: %(message)s', datefmt='%m-%d %H:%M:%S')
# create console handler
ch = logging.StreamHandler()
ch.setLevel(level)
ch.setFormatter(formatter)
# add the handlers to logger
logger.addHandler(ch)
# create file handler
if log_dir is not None and CONFIG.local_rank == 0:
log_file = os.path.join(log_dir, exp_string)
fh = logging.FileHandler(log_file+'.log', mode='w')
fh.setLevel(level)
fh.setFormatter(formatter)
logger.addHandler(fh)
pprint(CONFIG, stream=fh.stream)
# create tensorboard summary writer
if tb_log_dir is not None:
tb_logger = TensorBoardLogger(tb_log_dir=tb_log_dir, exp_string=exp_string)
return logger, tb_logger
else:
return logger
def normalize_image(image):
"""
normalize image array to 0~1
"""
image_flat = torch.flatten(image, start_dim=1)
return (image - image_flat.min(dim=1, keepdim=False)[0].view(3,1,1)) / (
image_flat.max(dim=1, keepdim=False)[0].view(3,1,1) - image_flat.min(dim=1, keepdim=False)[0].view(3,1,1) + 1e-8)
|