import gradio as gr import torch import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig from peft import PeftConfig, PeftModel import warnings from threading import Thread warnings.filterwarnings("ignore") PEFT_MODEL = "givyboy/TinyLlama-1.1B-Chat-v1.0-mental-health-conversational" SYSTEM_PROMPT = """Answer the following question truthfully. If you don't know the answer, respond 'Sorry, I don't know the answer to this question.'. If the question is too complex, respond 'Kindly, consult a psychiatrist for further queries.'.""" USER_PROMPT = lambda x: f""": {x}\n: """ ADD_RESPONSE = lambda x, y: f""": {x}\n: {y}""" DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu") bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_use_double_quant=True, bnb_4bit_compute_dtype=torch.float16, ) config = PeftConfig.from_pretrained(PEFT_MODEL) peft_base_model = AutoModelForCausalLM.from_pretrained( config.base_model_name_or_path, return_dict=True, # quantization_config=bnb_config, device_map="auto", trust_remote_code=True, offload_folder="offload/", offload_state_dict=True, ) peft_model = PeftModel.from_pretrained( peft_base_model, PEFT_MODEL, offload_folder="offload/", offload_state_dict=True, ) peft_model = peft_model.to(DEVICE) peft_tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) peft_tokenizer.pad_token = peft_tokenizer.eos_token pipeline = transformers.pipeline( "text-generation", model=peft_model, tokenizer=peft_tokenizer, torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto", ) # def format_message(message: str, history: list[str], memory_limit: int = 3) -> str: # if len(history) > memory_limit: # history = history[-memory_limit:] # if len(history) == 0: # return f"{SYSTEM_PROMPT}\n{USER_PROMPT(message)}" # formatted_message = f"{SYSTEM_PROMPT}\n{ADD_RESPONSE(history[0][0], history[0][1])}" # for msg, ans in history[1:]: # formatted_message += f"\n{ADD_RESPONSE(msg, ans)}" # formatted_message += f"\n{USER_PROMPT(message)}" # return formatted_message # def get_model_response(message: str, history: list[str]) -> str: # formatted_message = format_message(message, history) # sequences = pipeline( # formatted_message, # do_sample=True, # top_k=10, # num_return_sequences=1, # eos_token_id=peft_tokenizer.eos_token_id, # max_length=600, # )[0] # print(sequences["generated_text"]) # output = sequences["generated_text"].split(":")[-1].strip() # # print(f"Response: {output}") # return output start_message = "" def user(message, history): # Append the user's message to the conversation history return "", history + [[message, ""]] def chat(message, history): chat_history = [] for item in history: chat_history.append({"role": "user", "content": item[0]}) if item[1] is not None: chat_history.append({"role": "assistant", "content": item[1]}) message = f"{SYSTEM_PROMPT}\n{USER_PROMPT(message)}" chat_history.append({"role": "user", "content": message}) messages = peft_tokenizer.apply_chat_template(chat_history, tokenize=False, add_generation_prompt=True) # Tokenize the messages string model_inputs = peft_tokenizer([messages], return_tensors="pt").to(DEVICE) streamer = transformers.TextIteratorStreamer( peft_tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True ) generate_kwargs = dict( model_inputs, streamer=streamer, max_new_tokens=1024, do_sample=True, top_p=0.95, top_k=1000, temperature=0.75, num_beams=1, ) t = Thread(target=peft_model.generate, kwargs=generate_kwargs) t.start() # Initialize an empty string to store the generated text partial_text = "" for new_text in streamer: # print(new_text) partial_text += new_text # Yield an empty string to cleanup the message textbox and the updated conversation history yield partial_text chat = gr.ChatInterface(fn=chat, title="Mental Health Chatbot - SHEKHAR") chat.launch(share=True) # import os # from openai import OpenAI # from dotenv import load_dotenv # import gradio as gr # load_dotenv() # API_KEY = os.getenv("OPENAI_API_KEY") # openai = OpenAI(api_key=API_KEY) # create_msg = lambda x, y: {"role": x, "content": y} # SYSTEM_PROMPT = create_msg( # "system", # """You are a helpful mental health chatbot, please answer with care. If you don't know the answer, respond 'Sorry, I don't know the answer to this question.'. If the question is too complex, respond 'Kindly, consult a psychiatrist for further queries.'.""".strip(), # ) # def predict(message, history): # history_openai_format = [] # history_openai_format.append(SYSTEM_PROMPT) # for human, assistant in history: # history_openai_format.append({"role": "user", "content": human}) # history_openai_format.append({"role": "assistant", "content": assistant}) # history_openai_format.append({"role": "user", "content": message}) # response = openai.chat.completions.create( # model="ft:gpt-3.5-turbo-0613:personal::8kBTG8eh", messages=history_openai_format, temperature=0.35, stream=True # ) # partial_message = "" # for chunk in response: # if chunk.choices[0].delta.content is not None: # partial_message = partial_message + chunk.choices[0].delta.content # yield partial_message # gr.ChatInterface(fn=predict, title="Mental Health Chatbot").launch(share=True)