import os import gradio as gr import whisper from gtts import gTTS import io from groq import Groq from PyPDF2 import PdfReader from transformers import AutoTokenizer, AutoModelForCausalLM import torch # Set up environment variables os.environ["GROQ_API_KEY"] = "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" # Initialize the Groq client client = Groq(api_key=os.environ.get("GROQ_API_KEY")) # Load the Whisper model whisper_model = whisper.load_model("base") # You can choose other models like "small", "medium", "large" # Initialize the tokenizer and model from the saved checkpoint for RAG rag_tokenizer = AutoTokenizer.from_pretrained("himmeow/vi-gemma-2b-RAG") rag_model = AutoModelForCausalLM.from_pretrained( "himmeow/vi-gemma-2b-RAG", device_map="auto", torch_dtype=torch.bfloat16 ) # Use GPU if available for RAG model if torch.cuda.is_available(): rag_model.to("cuda") # Load PDF content def load_pdf(pdf_path): pdf_text = "" with open(pdf_path, "rb") as file: reader = PdfReader(file) for page_num in range(len(reader.pages)): page = reader.pages[page_num] text = page.extract_text() pdf_text += text + "\n" return pdf_text # Define the prompt format for the RAG model prompt_template = """ ### Instruction and Input: Based on the following context/document: {} Please answer the question: {} ### Response: {} """ # Function to process audio and generate a response using RAG and Groq def process_audio_rag(file_path): try: # Load and transcribe the audio using Whisper audio = whisper.load_audio(file_path) result = whisper_model.transcribe(audio) text = result["text"] # Load the PDF content (update with your PDF path or pass it as an argument) pdf_path = "/content/BN_Cotton.pdf" pdf_text = load_pdf(pdf_path) # Prepare the input data for the RAG model query = text input_text = prompt_template.format(pdf_text, query, " ") # Encode the input text into input ids for RAG model input_ids = rag_tokenizer(input_text, return_tensors="pt") if torch.cuda.is_available(): input_ids = input_ids.to("cuda") # Generate text using the RAG model outputs = rag_model.generate( **input_ids, max_new_tokens=500, no_repeat_ngram_size=5 ) rag_response = rag_tokenizer.decode(outputs[0], skip_special_tokens=True) # Generate a response using Groq if needed chat_completion = client.chat.completions.create( messages=[{"role": "user", "content": rag_response}], model="llama3-8b-8192", # Replace with the correct model if necessary ) response_message = chat_completion.choices[0].message.content.strip() # Convert the response text to speech tts = gTTS(response_message) response_audio_io = io.BytesIO() tts.write_to_fp(response_audio_io) response_audio_io.seek(0) # Save audio to a file to ensure it's generated correctly with open("response.mp3", "wb") as audio_file: audio_file.write(response_audio_io.getvalue()) # Return the response text and the path to the saved audio file return response_message, "response.mp3" except Exception as e: return f"An error occurred: {e}", None # Create a Gradio interface iface = gr.Interface( fn=process_audio_rag, inputs=gr.Audio(type="filepath"), outputs=[gr.Textbox(label="Response Text"), gr.Audio(label="Response Audio")], live=True, title="Agriculture Assistant" ) # Launch the interface with the given title iface.launch()