Spaces:
Build error
Build error
# -*- coding: utf-8 -*- | |
import pandas as pd | |
import numpy as np | |
import re | |
import itertools | |
import matplotlib.pyplot as plt | |
from sklearn.feature_extraction.text import TfidfVectorizer | |
from sklearn.metrics.pairwise import linear_kernel | |
from fuzzywuzzy import fuzz | |
from sklearn.feature_extraction.text import TfidfVectorizer | |
import gradio as gr | |
#from datasets import load_dataset | |
#dataset = load_dataset('csv', data_files="steam-clean-games.csv", streaming=True) | |
#df = pd.DataFrame.from_dict(dataset) | |
df = pd.read_csv("steam-clean-games.csv", error_bad_lines=False, encoding='utf-8') | |
# the function to extract years | |
def extract_year(date): | |
year = date[:4] | |
if year.isnumeric(): | |
return int(year) | |
else: | |
return np.nan | |
df['year'] = df['release_date'].apply(extract_year) | |
df['steamspy_tags'] = df['steamspy_tags'].str.replace(' ','-') | |
df['genres'] = df['steamspy_tags'].str.replace(';',' ') | |
counts = dict() | |
for i in df.index: | |
for g in df.loc[i,'genres'].split(' '): | |
if g not in counts: | |
counts[g] = 1 | |
else: | |
counts[g] = counts[g] + 1 | |
def create_score(row): | |
pos_count = row['positive_ratings'] | |
neg_count = row['negative_ratings'] | |
total_count = pos_count + neg_count | |
average = pos_count / total_count | |
return round(average, 2) | |
def total_ratings(row): | |
pos_count = row['positive_ratings'] | |
neg_count = row['negative_ratings'] | |
total_count = pos_count + neg_count | |
return total_count | |
df['total_ratings'] = df.apply(total_ratings, axis=1) | |
df['score'] = df.apply(create_score, axis=1) | |
# Calculate mean of vote average column | |
C = df['score'].mean() | |
m = df['total_ratings'].quantile(0.90) | |
# Function that computes the weighted rating of each game | |
def weighted_rating(x, m=m, C=C): | |
v = x['total_ratings'] | |
R = x['score'] | |
# Calculation based on the IMDB formula | |
return round((v/(v+m) * R) + (m/(m+v) * C), 2) | |
# Define a new feature 'score' and calculate its value with `weighted_rating()` | |
df['weighted_score'] = df.apply(weighted_rating, axis=1) | |
# create an object for TfidfVectorizer | |
tfidf_vector = TfidfVectorizer(stop_words='english') | |
tfidf_matrix = tfidf_vector.fit_transform(df['genres']) | |
# create the cosine similarity matrix | |
sim_matrix = linear_kernel(tfidf_matrix,tfidf_matrix) | |
# create a function to find the closest title | |
def matching_score(a,b): | |
#fuzz.ratio(a,b) calculates the Levenshtein Distance between a and b, and returns the score for the distance | |
return fuzz.ratio(a,b) | |
"""# Make our Recommendation Engine | |
We need combine our formatted dataset with the similarity logic to return recommendations. This is also where we can fine-tune it if we do not like the results. | |
""" | |
##These functions needed to return different attributes of the recommended game titles | |
#Convert index to title_year | |
def get_title_year_from_index(index): | |
return df[df.index == index]['year'].values[0] | |
#Convert index to title | |
def get_title_from_index(index): | |
return df[df.index == index]['name'].values[0] | |
#Convert index to title | |
def get_index_from_title(title): | |
return df[df.name == title].index.values[0] | |
#Convert index to score | |
def get_score_from_index(index): | |
return df[df.index == index]['score'].values[0] | |
#Convert index to weighted score | |
def get_weighted_score_from_index(index): | |
return df[df.index == index]['weighted_score'].values[0] | |
#Convert index to total_ratings | |
def get_total_ratings_from_index(index): | |
return df[df.index == index]['total_ratings'].values[0] | |
#Convert index to platform | |
def get_platform_from_index(index): | |
return df[df.index == index]['platforms'].values[0] | |
# A function to return the most similar title to the words a user type | |
def find_closest_title(title): | |
#matching_score(a,b) > a is the current row, b is the title we're trying to match | |
leven_scores = list(enumerate(df['name'].apply(matching_score, b=title))) #[(0, 30), (1,95), (2, 19)~~] A tuple of distances per index | |
sorted_leven_scores = sorted(leven_scores, key=lambda x: x[1], reverse=True) #Sorts list of tuples by distance [(1, 95), (3, 49), (0, 30)~~] | |
closest_title = get_title_from_index(sorted_leven_scores[0][0]) | |
distance_score = sorted_leven_scores[0][1] | |
return closest_title, distance_score | |
def gradio_contents_based_recommender_v2(game, how_many, sort_option, min_year, platform, min_score): | |
#Return closest game title match | |
closest_title, distance_score = find_closest_title(game) | |
#Create a Dataframe with these column headers | |
recomm_df = pd.DataFrame(columns=['Game Title', 'Year', 'Score', 'Weighted Score', 'Total Ratings']) | |
#find the corresponding index of the game title | |
games_index = get_index_from_title(closest_title) | |
#return a list of the most similar game indexes as a list | |
games_list = list(enumerate(sim_matrix[int(games_index)])) | |
#Sort list of similar games from top to bottom | |
similar_games = list(filter(lambda x:x[0] != int(games_index), sorted(games_list,key=lambda x:x[1], reverse=True))) | |
#Print the game title the similarity matrix is based on | |
print('Here\'s the list of games similar to '+'\033[1m'+str(closest_title)+'\033[0m'+'.\n') | |
#Only return the games that are on selected platform | |
n_games = [] | |
for i,s in similar_games: | |
if platform in get_platform_from_index(i): | |
n_games.append((i,s)) | |
#Only return the games that are above the minimum score | |
high_scores = [] | |
for i,s in n_games: | |
if get_score_from_index(i) > min_score: | |
high_scores.append((i,s)) | |
#Return the game tuple (game index, game distance score) and store in a dataframe | |
for i,s in n_games[:how_many]: | |
#Dataframe will contain attributes based on game index | |
row = {'Game Title': get_title_from_index(i), 'Year': get_title_year_from_index(i), 'Score': get_score_from_index(i), | |
'Weighted Score': get_weighted_score_from_index(i), | |
'Total Ratings': get_total_ratings_from_index(i),} | |
#Append each row to this dataframe | |
recomm_df = recomm_df.append(row, ignore_index = True) | |
#Sort dataframe by Sort_Option provided by user | |
recomm_df = recomm_df.sort_values(sort_option, ascending=False) | |
#Only include games released same or after minimum year selected | |
recomm_df = recomm_df[recomm_df['Year'] >= min_year] | |
return recomm_df | |
#Create list of unique calendar years based on main df column | |
years_sorted = sorted(list(df['year'].unique())) | |
#Interface will include these buttons based on parameters in the function with a dataframe output | |
recommender = gr.Interface(gradio_contents_based_recommender_v2, ["text", gr.inputs.Slider(1, 20, step=int(1)), | |
gr.inputs.Radio(['Year','Score','Weighted Score','Total Ratings']), | |
gr.inputs.Slider(int(years_sorted[0]), int(years_sorted[-1]), step=int(1)), | |
gr.inputs.Radio(['windows','linux','mac']), | |
gr.inputs.Slider(0, 10, step=0.1)], | |
"dataframe") | |
recommender.launch(debug=True) |