import datetime import numpy as np import pandas as pd import re import json import os import glob import torch import torch.nn.functional as F from torch.optim import Adam from tqdm import tqdm from torch import nn from transformers import AutoTokenizer import argparse from bs4 import BeautifulSoup import requests def split_essay_to_sentence(origin_essay): origin_essay_sentence = sum([[a.strip() for a in i.split('.')] for i in origin_essay.split('\n')], []) essay_sent = [a for a in origin_essay_sentence if len(a) > 0] return essay_sent def get_first_extraction(text_sentence): row_dict = {} for row in tqdm(text_sentence): question = 'what is the feeling?' answer = question_answerer(question=question, context=row) row_dict[row] = answer return row_dict class myDataset_for_infer(torch.utils.data.Dataset): def __init__(self, X): self.X = X def __len__(self): return len(self.X) def __getitem__(self,idx): sentences = tokenizer(self.X[idx], return_tensors = 'pt', padding = 'max_length', max_length = 96, truncation = True) return sentences def infer_data(model, main_feeling_keyword): #ds = myDataset_for_infer() df_infer = myDataset_for_infer(main_feeling_keyword) infer_dataloader = torch.utils.data.DataLoader(df_infer, batch_size= 16) device = 'cuda' if torch.cuda.is_available() else 'cpu' if device == 'cuda': model = model.cuda() result_list = [] with torch.no_grad(): for idx, infer_input in tqdm(enumerate(infer_dataloader)): mask = infer_input['attention_mask'].to(device) input_id = infer_input['input_ids'].squeeze(1).to(device) output = model(input_id, mask) result = np.argmax(output.logits, axis=1).numpy() result_list.extend(result) return result_list def get_word_emotion_pair(cls_model, origin_essay_sentence, idx2emo): import re def get_noun(sent): return [w for (w, p) in pos_tag(word_tokenize(p_texts[0])) if len(w) > 1 and p in (['NN','N','NP'])] def get_adj(sent): return [w for (w, p) in pos_tag(word_tokenize(p_texts[0])) if len(w) > 1 and p in (['ADJ'])] def get_verb(sent): return [w for (w, p) in pos_tag(word_tokenize(p_texts[0])) if len(w) > 1 and p in (['VERB'])] result_list = infer_data(cls_model, origin_essay_sentence) final_result = pd.DataFrame(data = {'text': origin_essay_sentence , 'label' : result_list}) final_result['emotion'] = final_result['label'].map(idx2emo) final_result['noun_list'] = final_result['text'].map(get_noun) final_result['adj_list'] = final_result['text'].map(get_adj) final_result['verb_list'] = final_result['text'].map(get_verb) final_result['title'] = 'none' file_made_dt = datetime.datetime.now() file_made_dt_str = datetime.datetime.strftime(file_made_dt, '%Y%m%d_%H%M%d') os.makedirs(f'./result/{nickname}/{file_made_dt_str}/', exist_ok = True) final_result.to_csv(f"./result/{nickname}/{file_made_dt_str}/essay_result.csv", index = False) return final_result, file_made_dt_str return final_result, file_made_dt_str def get_essay_base_analysis(file_made_dt_str, nickname): essay1 = pd.read_csv(f"./result/{nickname}/{file_made_dt_str}/essay_result.csv") essay1['noun_list_len'] = essay1['noun_list'].apply(lambda x : len(x)) essay1['noun_list_uniqlen'] = essay1['noun_list'].apply(lambda x : len(set(x))) essay1['adj_list_len'] = essay1['adj_list'].apply(lambda x : len(x)) essay1['adj_list_uniqlen'] = essay1['adj_list'].apply(lambda x : len(set(x))) essay1['vocab_all'] = essay1[['noun_list','adj_list']].apply(lambda x : sum((eval(x[0]),eval(x[1])), []), axis=1) essay1['vocab_cnt'] = essay1['vocab_all'].apply(lambda x : len(x)) essay1['vocab_unique_cnt'] = essay1['vocab_all'].apply(lambda x : len(set(x))) essay1['noun_list'] = essay1['noun_list'].apply(lambda x : eval(x)) essay1['adj_list'] = essay1['adj_list'].apply(lambda x : eval(x)) d = essay1.groupby('title')[['noun_list','adj_list']].sum([]).reset_index() d['noun_cnt'] = d['noun_list'].apply(lambda x : len(set(x))) d['adj_cnt'] = d['adj_list'].apply(lambda x : len(set(x))) # 문장 기준 최고 감정 essay_summary =essay1.groupby(['title'])['emotion'].value_counts().unstack(level =1) emo_vocab_dict = {} for k, v in essay1[['emotion','noun_list']].values: for vocab in v: if (k, 'noun', vocab) not in emo_vocab_dict: emo_vocab_dict[(k, 'noun', vocab)] = 0 emo_vocab_dict[(k, 'noun', vocab)] += 1 for k, v in essay1[['emotion','adj_list']].values: for vocab in v: if (k, 'adj', vocab) not in emo_vocab_dict: emo_vocab_dict[(k, 'adj', vocab)] = 0 emo_vocab_dict[(k, 'adj', vocab)] += 1 vocab_emo_cnt_dict = {} for k, v in essay1[['emotion','noun_list']].values: for vocab in v: if (vocab, 'noun') not in vocab_emo_cnt_dict: vocab_emo_cnt_dict[('noun', vocab)] = {} if k not in vocab_emo_cnt_dict[( 'noun', vocab)]: vocab_emo_cnt_dict[( 'noun', vocab)][k] = 0 vocab_emo_cnt_dict[('noun', vocab)][k] += 1 for k, v in essay1[['emotion','adj_list']].values: for vocab in v: if ('adj', vocab) not in vocab_emo_cnt_dict: vocab_emo_cnt_dict[( 'adj', vocab)] = {} if k not in vocab_emo_cnt_dict[( 'adj', vocab)]: vocab_emo_cnt_dict[( 'adj', vocab)][k] = 0 vocab_emo_cnt_dict[('adj', vocab)][k] += 1 vocab_emo_cnt_df = pd.DataFrame(vocab_emo_cnt_dict).T vocab_emo_cnt_df['total'] = vocab_emo_cnt_df.sum(axis=1) # 단어별 최고 감정 및 감정 개수 all_result=vocab_emo_cnt_df.sort_values(by = 'total', ascending = False) # 단어별 최고 감정 및 감정 개수 , 형용사 포함 시 adj_result=vocab_emo_cnt_df.sort_values(by = 'total', ascending = False) # 명사만 사용 시 noun_result=vocab_emo_cnt_df[vocab_emo_cnt_df.index.get_level_values(0) == 'noun'].sort_values(by = 'total', ascending = False) final_file_name = f"essay_all_vocab_result.csv" adj_file_name = f"essay_adj_vocab_result.csv" noun_file_name = f"essay_noun_vocab_result.csv" os.makedirs(f'./result/{nickname}/{file_made_dt_str}/', exist_ok = True) all_result.to_csv(f"./result/{nickname}/{file_made_dt_str}/essay_all_vocab_result.csv", index = False) adj_result.to_csv(f"./result/{nickname}/{file_made_dt_str}/essay_adj_vocab_result.csv", index = False) noun_result.to_csv(f"./result/{nickname}/{file_made_dt_str}/essay_noun_vocab_result.csv", index = False) return all_result, adj_result, noun_result, essay_summary, file_made_dt_str from transformers import AutoModelForSequenceClassification device = 'cuda' if torch.cuda.is_available() else 'cpu' def all_process(origin_essay, nickname): essay_sent =split_essay_to_sentence(origin_essay) idx2emo = {0: 'Anger', 1: 'Sadness', 2: 'Anxiety', 3: 'Hurt', 4: 'Embarrassment', 5: 'Joy'} tokenizer = AutoTokenizer.from_pretrained('seriouspark/xlm-roberta-base-finetuning-sentimental-6label') cls_model = AutoModelForSequenceClassification.from_pretrained('seriouspark/xlm-roberta-base-finetuning-sentimental-6label') final_result, file_name_dt = get_word_emotion_pair(cls_model, essay_sent, idx2emo) all_result, adj_result, noun_result, essay_summary, file_made_dt_str = get_essay_base_analysis(file_name_dt, nickname) summary_result = pd.concat([adj_result, noun_result]).fillna(0).sort_values(by = 'total', ascending = False).fillna(0).reset_index()[:30] with open(f'./result/{nickname}/{file_name_dt}/summary.json','w') as f: json.dump( essay_summary.to_json(),f) with open(f'./result/{nickname}/{file_made_dt_str}/all_result.json','w') as f: json.dump( all_result.to_json(),f) with open(f'./result/{nickname}/{file_made_dt_str}/adj_result.json','w') as f: json.dump( adj_result.to_json(),f) with open(f'./result/{nickname}/{file_made_dt_str}/noun_result.json','w') as f: json.dump( noun_result.to_json(),f) #return essay_summary, summary_result total_cnt = essay_summary.sum(axis=1).values[0] essay_summary_list = sorted(essay_summary.T.to_dict()['none'].items(), key = lambda x: x[1], reverse =True) essay_summary_list_str = ' '.join([f'{row[0]} {int(row[1]*100 / total_cnt)}%' for row in essay_summary_list]) summary1 = f"""{nickname}, Your sentiments in your writting are [{essay_summary_list_str}] """ return summary1 def get_similar_vocab(message): if (len(message) > 0) & (len(re.findall('[A-Za-z]+', message))> 0): vocab = message all_dict_url = f"https://www.dictionary.com/browse/{vocab}" response = requests.get(all_dict_url) html_content = response.text # BeautifulSoup로 HTML 파싱 soup = BeautifulSoup(html_content, 'html.parser') result = soup.find_all(class_='ESah86zaufmd2_YPdZtq') p_texts = [p.get_text() for p in soup.find_all('p')] whole_vocab = sum([ [word for word , pos in pos_tag(word_tokenize(text)) if pos in ['NN','JJ','NNP','NNS']] for text in p_texts],[]) similar_words_final = Counter(whole_vocab).most_common(10) return [i[0] for i in similar_words_final] else: return message def get_similar_means(vocab): all_dict_url = f"https://www.dictionary.com/browse/{vocab}" response = requests.get(all_dict_url) html_content = response.text soup = BeautifulSoup(html_content, 'html.parser') result = soup.find_all(class_='ESah86zaufmd2_YPdZtq') p_texts = [p.get_text() for p in soup.find_all('p')] return p_texts[:10] info_dict = {} def run_all(message, history): global info_dict if message.find('NICKNAME:')>=0: global nickname nickname = message.replace('NICKNAME','').replace(':','').strip() #global nickname info_dict[nickname] = {} return f'''Good [{nickname}]!! Let's start!. Give me a vocabulary in your mind. \n\n\nwhen you type the vocab, please include \"VOCAB: \" e.g ''' try : #print(nickname) if message.find('VOCAB:')>=0: clear_message = message.replace('VOCAB','').replace(':','').strip() info_dict[nickname]['main_word'] = clear_message vocab_mean_list = [] similar_words_final = get_similar_vocab(clear_message) print(similar_words_final) similar_words_final_with_main = similar_words_final + [clear_message] if len(similar_words_final_with_main)>0: for w in similar_words_final_with_main: temp_means = get_similar_means(w) vocab_mean_list.append(temp_means[:2]) fixed_similar_words_final = list(set([i for i in sum(vocab_mean_list, []) if len(i) > 10]))[:10] word_str = ' \n'.join([str(idx) + ") " + i for idx, i in enumerate(similar_words_final, 1)]) sentence_str = ' \n'.join([str(idx) + ") " + i for idx, i in enumerate(fixed_similar_words_final, 1)]) return f'''Let's start writing with the VOCAB<{clear_message}>! First, how about those similar words? {word_str} \n The word has these meanings. {sentence_str}\n Pick and type one meaning of these list. \n\n\n When you type in, please include \"SENT:\", like this. \n e.g. ''' else: return 'Include \"VOCAB:\" please (VOCAB: orange)' elif message.find('SENT:')>=0: clear_message = message.replace('SENT','').replace(':','').strip() info_dict[nickname]['selected_sentence'] = clear_message return f'''You've got [{clear_message}]. \n With this sentence, we can make creative short writings \n\n\n Include \"SHORT_W: \", please. \n e.g ''' elif message.find('SHORT_W:')>=0: clear_message = message.replace('SHORT_W','').replace(':','').strip() info_dict[nickname]['short_contents'] = clear_message return f'''This is your short sentence <{clear_message}> . \n With this sentence, let's step one more thing, please write long sentences more than 500 words. \n\n\n When you input, please include\"LONG_W: \" like this. \n e.g ''' elif message.find('LONG_W:')>=0: long_message = message.replace('LONG_W','').replace(':','').strip() length_of_lm = len(long_message) if length_of_lm >= 500: info_dict['long_contents'] = long_message os.makedirs(f"./result/{nickname}/", exist_ok = True) with open(f"./result/{nickname}/contents.txt",'w') as f: f.write(long_message) return f'Your entered text is {length_of_lm} characters. This text is worth analyzing. If you wish to start the analysis, please type "START ANALYSIS"' else : return f'The text you have entered is {length_of_lm} characters. It\'s a bit short for analysis. Could you please provide a bit more sentences' elif message.find('START ANALYSIS')>=0: with open(f"./result/{nickname}/contents.txt",'r') as f: orign_essay = f.read() summary = all_process(orign_essay, nickname) #print(summary) return summary else: return 'Please start from the beginning' except: return 'An error has occurred. Restarting from the beginning. Please enter your NICKNAME:' import gradio as gr import requests history = [] info_dict = {} iface = gr.ChatInterface( fn=run_all, chatbot = gr.Chatbot(), textbox = gr.Textbox(placeholder="Please enter including the chatbot's request prefix.", container = True, scale = 7), title = 'MooGeulMooGeul', description = "Please start by choosing your nickname. Include 'NICKNAME: ' in your response", theme = 'soft', examples = ['NICKNAME: bluebottle', 'VOCAB: orange', 'SENT: a globose, reddish-yellow, bitter or sweet, edible citrus fruit.', 'SHORT_W: Whenever I smell the citrus, I always reminise him, first', '''LONG_W: Whenever I smell citrus, I always think of him. He used to come to the gym wearing a blue T-shirt, often spraying a strong citrus scent. That scent was quite distinctive, letting me know when he was passing by. I usually arrived to work out between 7:00 and 7:30 AM, and interestingly, he would arrive about 10 minutes after me. On days I came early, he did too; and when I was late, he was also late. The citrus scent from his body was always so intense, as if he had just sprayed it.''' ], cache_examples = False, retry_btn = None, undo_btn = 'Delete Previous', clear_btn = 'Clear', ) iface.launch(share=True)