seriouspark's picture
Add application file
4fe5bff
raw
history blame
15.5 kB
import datetime
import numpy as np
import pandas as pd
import re
import json
import os
import glob
import torch
import torch.nn.functional as F
from torch.optim import Adam
from tqdm import tqdm
from torch import nn
from transformers import AutoTokenizer
import argparse
from bs4 import BeautifulSoup
import requests
def split_essay_to_sentence(origin_essay):
origin_essay_sentence = sum([[a.strip() for a in i.split('.')] for i in origin_essay.split('\n')], [])
essay_sent = [a for a in origin_essay_sentence if len(a) > 0]
return essay_sent
def get_first_extraction(text_sentence):
row_dict = {}
for row in tqdm(text_sentence):
question = 'what is the feeling?'
answer = question_answerer(question=question, context=row)
row_dict[row] = answer
return row_dict
class myDataset_for_infer(torch.utils.data.Dataset):
def __init__(self, X):
self.X = X
def __len__(self):
return len(self.X)
def __getitem__(self,idx):
sentences = tokenizer(self.X[idx], return_tensors = 'pt', padding = 'max_length', max_length = 96, truncation = True)
return sentences
def infer_data(model, main_feeling_keyword):
#ds = myDataset_for_infer()
df_infer = myDataset_for_infer(main_feeling_keyword)
infer_dataloader = torch.utils.data.DataLoader(df_infer, batch_size= 16)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
if device == 'cuda':
model = model.cuda()
result_list = []
with torch.no_grad():
for idx, infer_input in tqdm(enumerate(infer_dataloader)):
mask = infer_input['attention_mask'].to(device)
input_id = infer_input['input_ids'].squeeze(1).to(device)
output = model(input_id, mask)
result = np.argmax(output.logits, axis=1).numpy()
result_list.extend(result)
return result_list
def get_word_emotion_pair(cls_model, origin_essay_sentence, idx2emo):
import re
def get_noun(sent):
return [w for (w, p) in pos_tag(word_tokenize(p_texts[0])) if len(w) > 1 and p in (['NN','N','NP'])]
def get_adj(sent):
return [w for (w, p) in pos_tag(word_tokenize(p_texts[0])) if len(w) > 1 and p in (['ADJ'])]
def get_verb(sent):
return [w for (w, p) in pos_tag(word_tokenize(p_texts[0])) if len(w) > 1 and p in (['VERB'])]
result_list = infer_data(cls_model, origin_essay_sentence)
final_result = pd.DataFrame(data = {'text': origin_essay_sentence , 'label' : result_list})
final_result['emotion'] = final_result['label'].map(idx2emo)
final_result['noun_list'] = final_result['text'].map(get_noun)
final_result['adj_list'] = final_result['text'].map(get_adj)
final_result['verb_list'] = final_result['text'].map(get_verb)
final_result['title'] = 'none'
file_made_dt = datetime.datetime.now()
file_made_dt_str = datetime.datetime.strftime(file_made_dt, '%Y%m%d_%H%M%d')
os.makedirs(f'./result/{nickname}/{file_made_dt_str}/', exist_ok = True)
final_result.to_csv(f"./result/{nickname}/{file_made_dt_str}/essay_result.csv", index = False)
return final_result, file_made_dt_str
return final_result, file_made_dt_str
def get_essay_base_analysis(file_made_dt_str, nickname):
essay1 = pd.read_csv(f"./result/{nickname}/{file_made_dt_str}/essay_result.csv")
essay1['noun_list_len'] = essay1['noun_list'].apply(lambda x : len(x))
essay1['noun_list_uniqlen'] = essay1['noun_list'].apply(lambda x : len(set(x)))
essay1['adj_list_len'] = essay1['adj_list'].apply(lambda x : len(x))
essay1['adj_list_uniqlen'] = essay1['adj_list'].apply(lambda x : len(set(x)))
essay1['vocab_all'] = essay1[['noun_list','adj_list']].apply(lambda x : sum((eval(x[0]),eval(x[1])), []), axis=1)
essay1['vocab_cnt'] = essay1['vocab_all'].apply(lambda x : len(x))
essay1['vocab_unique_cnt'] = essay1['vocab_all'].apply(lambda x : len(set(x)))
essay1['noun_list'] = essay1['noun_list'].apply(lambda x : eval(x))
essay1['adj_list'] = essay1['adj_list'].apply(lambda x : eval(x))
d = essay1.groupby('title')[['noun_list','adj_list']].sum([]).reset_index()
d['noun_cnt'] = d['noun_list'].apply(lambda x : len(set(x)))
d['adj_cnt'] = d['adj_list'].apply(lambda x : len(set(x)))
# 문장 기준 최고 감정
essay_summary =essay1.groupby(['title'])['emotion'].value_counts().unstack(level =1)
emo_vocab_dict = {}
for k, v in essay1[['emotion','noun_list']].values:
for vocab in v:
if (k, 'noun', vocab) not in emo_vocab_dict:
emo_vocab_dict[(k, 'noun', vocab)] = 0
emo_vocab_dict[(k, 'noun', vocab)] += 1
for k, v in essay1[['emotion','adj_list']].values:
for vocab in v:
if (k, 'adj', vocab) not in emo_vocab_dict:
emo_vocab_dict[(k, 'adj', vocab)] = 0
emo_vocab_dict[(k, 'adj', vocab)] += 1
vocab_emo_cnt_dict = {}
for k, v in essay1[['emotion','noun_list']].values:
for vocab in v:
if (vocab, 'noun') not in vocab_emo_cnt_dict:
vocab_emo_cnt_dict[('noun', vocab)] = {}
if k not in vocab_emo_cnt_dict[( 'noun', vocab)]:
vocab_emo_cnt_dict[( 'noun', vocab)][k] = 0
vocab_emo_cnt_dict[('noun', vocab)][k] += 1
for k, v in essay1[['emotion','adj_list']].values:
for vocab in v:
if ('adj', vocab) not in vocab_emo_cnt_dict:
vocab_emo_cnt_dict[( 'adj', vocab)] = {}
if k not in vocab_emo_cnt_dict[( 'adj', vocab)]:
vocab_emo_cnt_dict[( 'adj', vocab)][k] = 0
vocab_emo_cnt_dict[('adj', vocab)][k] += 1
vocab_emo_cnt_df = pd.DataFrame(vocab_emo_cnt_dict).T
vocab_emo_cnt_df['total'] = vocab_emo_cnt_df.sum(axis=1)
# 단어별 최고 감정 및 감정 개수
all_result=vocab_emo_cnt_df.sort_values(by = 'total', ascending = False)
# 단어별 최고 감정 및 감정 개수 , 형용사 포함 시
adj_result=vocab_emo_cnt_df.sort_values(by = 'total', ascending = False)
# 명사만 사용 시
noun_result=vocab_emo_cnt_df[vocab_emo_cnt_df.index.get_level_values(0) == 'noun'].sort_values(by = 'total', ascending = False)
final_file_name = f"essay_all_vocab_result.csv"
adj_file_name = f"essay_adj_vocab_result.csv"
noun_file_name = f"essay_noun_vocab_result.csv"
os.makedirs(f'./result/{nickname}/{file_made_dt_str}/', exist_ok = True)
all_result.to_csv(f"./result/{nickname}/{file_made_dt_str}/essay_all_vocab_result.csv", index = False)
adj_result.to_csv(f"./result/{nickname}/{file_made_dt_str}/essay_adj_vocab_result.csv", index = False)
noun_result.to_csv(f"./result/{nickname}/{file_made_dt_str}/essay_noun_vocab_result.csv", index = False)
return all_result, adj_result, noun_result, essay_summary, file_made_dt_str
from transformers import AutoModelForSequenceClassification
device = 'cuda' if torch.cuda.is_available() else 'cpu'
def all_process(origin_essay, nickname):
essay_sent =split_essay_to_sentence(origin_essay)
idx2emo = {0: 'Anger', 1: 'Sadness', 2: 'Anxiety', 3: 'Hurt', 4: 'Embarrassment', 5: 'Joy'}
tokenizer = AutoTokenizer.from_pretrained('seriouspark/xlm-roberta-base-finetuning-sentimental-6label')
cls_model = AutoModelForSequenceClassification.from_pretrained('seriouspark/xlm-roberta-base-finetuning-sentimental-6label')
final_result, file_name_dt = get_word_emotion_pair(cls_model, essay_sent, idx2emo)
all_result, adj_result, noun_result, essay_summary, file_made_dt_str = get_essay_base_analysis(file_name_dt, nickname)
summary_result = pd.concat([adj_result, noun_result]).fillna(0).sort_values(by = 'total', ascending = False).fillna(0).reset_index()[:30]
with open(f'./result/{nickname}/{file_name_dt}/summary.json','w') as f:
json.dump( essay_summary.to_json(),f)
with open(f'./result/{nickname}/{file_made_dt_str}/all_result.json','w') as f:
json.dump( all_result.to_json(),f)
with open(f'./result/{nickname}/{file_made_dt_str}/adj_result.json','w') as f:
json.dump( adj_result.to_json(),f)
with open(f'./result/{nickname}/{file_made_dt_str}/noun_result.json','w') as f:
json.dump( noun_result.to_json(),f)
#return essay_summary, summary_result
total_cnt = essay_summary.sum(axis=1).values[0]
essay_summary_list = sorted(essay_summary.T.to_dict()['none'].items(), key = lambda x: x[1], reverse =True)
essay_summary_list_str = ' '.join([f'{row[0]} {int(row[1]*100 / total_cnt)}%' for row in essay_summary_list])
summary1 = f"""{nickname}, Your sentiments in your writting are [{essay_summary_list_str}] """
return summary1
def get_similar_vocab(message):
if (len(message) > 0) & (len(re.findall('[A-Za-z]+', message))> 0):
vocab = message
all_dict_url = f"https://www.dictionary.com/browse/{vocab}"
response = requests.get(all_dict_url)
html_content = response.text
# BeautifulSoup로 HTML 파싱
soup = BeautifulSoup(html_content, 'html.parser')
result = soup.find_all(class_='ESah86zaufmd2_YPdZtq')
p_texts = [p.get_text() for p in soup.find_all('p')]
whole_vocab = sum([ [word for word , pos in pos_tag(word_tokenize(text)) if pos in ['NN','JJ','NNP','NNS']] for text in p_texts],[])
similar_words_final = Counter(whole_vocab).most_common(10)
return [i[0] for i in similar_words_final]
else:
return message
def get_similar_means(vocab):
all_dict_url = f"https://www.dictionary.com/browse/{vocab}"
response = requests.get(all_dict_url)
html_content = response.text
soup = BeautifulSoup(html_content, 'html.parser')
result = soup.find_all(class_='ESah86zaufmd2_YPdZtq')
p_texts = [p.get_text() for p in soup.find_all('p')]
return p_texts[:10]
info_dict = {}
def run_all(message, history):
global info_dict
if message.find('NICKNAME:')>=0:
global nickname
nickname = message.replace('NICKNAME','').replace(':','').strip()
#global nickname
info_dict[nickname] = {}
return f'''Good [{nickname}]!! Let's start!.
Give me a vocabulary in your mind.
\n\n\nwhen you type the vocab, please include \"VOCAB: \"
e.g <VOCAB: orange>
'''
try :
#print(nickname)
if message.find('VOCAB:')>=0:
clear_message = message.replace('VOCAB','').replace(':','').strip()
info_dict[nickname]['main_word'] = clear_message
vocab_mean_list = []
similar_words_final = get_similar_vocab(clear_message)
print(similar_words_final)
similar_words_final_with_main = similar_words_final + [clear_message]
if len(similar_words_final_with_main)>0:
for w in similar_words_final_with_main:
temp_means = get_similar_means(w)
vocab_mean_list.append(temp_means[:2])
fixed_similar_words_final = list(set([i for i in sum(vocab_mean_list, []) if len(i) > 10]))[:10]
word_str = ' \n'.join([str(idx) + ") " + i for idx, i in enumerate(similar_words_final, 1)])
sentence_str = ' \n'.join([str(idx) + ") " + i for idx, i in enumerate(fixed_similar_words_final, 1)])
return f'''Let's start writing with the VOCAB<{clear_message}>!
First, how about those similar words?
{word_str} \n
The word has these meanings.
{sentence_str}\n
Pick and type one meaning of these list.
\n\n\n When you type in, please include \"SENT:\", like this.
\n e.g. <SENT: a globose, reddish-yellow, bitter or sweet, edible citrus fruit. >
'''
else:
return 'Include \"VOCAB:\" please (VOCAB: orange)'
elif message.find('SENT:')>=0:
clear_message = message.replace('SENT','').replace(':','').strip()
info_dict[nickname]['selected_sentence'] = clear_message
return f'''You've got [{clear_message}].
\n With this sentence, we can make creative short writings
\n\n\n Include \"SHORT_W: \", please.
\n e.g <SHORT_W: Whenever I smell the citrus, I always reminise him, first>
'''
elif message.find('SHORT_W:')>=0:
clear_message = message.replace('SHORT_W','').replace(':','').strip()
info_dict[nickname]['short_contents'] = clear_message
return f'''This is your short sentence <{clear_message}> .
\n With this sentence, let's step one more thing, please write long sentences more than 500 words.
\n\n\n When you input, please include\"LONG_W: \" like this.
\n e.g <LONG_W: He enjoyed wearing blue T-shirts at the gym, but the intense citrus scent he used on his clothes was noticeably excessive ... >
'''
elif message.find('LONG_W:')>=0:
long_message = message.replace('LONG_W','').replace(':','').strip()
length_of_lm = len(long_message)
if length_of_lm >= 500:
info_dict['long_contents'] = long_message
os.makedirs(f"./result/{nickname}/", exist_ok = True)
with open(f"./result/{nickname}/contents.txt",'w') as f:
f.write(long_message)
return f'Your entered text is {length_of_lm} characters. This text is worth analyzing. If you wish to start the analysis, please type "START ANALYSIS"'
else :
return f'The text you have entered is {length_of_lm} characters. It\'s a bit short for analysis. Could you please provide a bit more sentences'
elif message.find('START ANALYSIS')>=0:
with open(f"./result/{nickname}/contents.txt",'r') as f:
orign_essay = f.read()
summary = all_process(orign_essay, nickname)
#print(summary)
return summary
else:
return 'Please start from the beginning'
except:
return 'An error has occurred. Restarting from the beginning. Please enter your NICKNAME:'
import gradio as gr
import requests
history = []
info_dict = {}
iface = gr.ChatInterface(
fn=run_all,
chatbot = gr.Chatbot(),
textbox = gr.Textbox(placeholder="Please enter including the chatbot's request prefix.", container = True, scale = 7),
title = 'MooGeulMooGeul',
description = "Please start by choosing your nickname. Include 'NICKNAME: ' in your response",
theme = 'soft',
examples = ['NICKNAME: bluebottle',
'VOCAB: orange',
'SENT: a globose, reddish-yellow, bitter or sweet, edible citrus fruit.',
'SHORT_W: Whenever I smell the citrus, I always reminise him, first',
'''LONG_W: Whenever I smell citrus, I always think of him. He used to come to the gym wearing a blue T-shirt, often spraying a strong citrus scent.
That scent was quite distinctive, letting me know when he was passing by.
I usually arrived to work out between 7:00 and 7:30 AM, and interestingly, he would arrive about 10 minutes after me.
On days I came early, he did too; and when I was late, he was also late.
The citrus scent from his body was always so intense, as if he had just sprayed it.'''
],
cache_examples = False,
retry_btn = None,
undo_btn = 'Delete Previous',
clear_btn = 'Clear',
)
iface.launch(share=True)