Spaces:
Runtime error
Runtime error
import datetime | |
import numpy as np | |
import pandas as pd | |
import re | |
import json | |
import os | |
import glob | |
import torch | |
import torch.nn.functional as F | |
from torch.optim import Adam | |
from tqdm import tqdm | |
from torch import nn | |
from transformers import AutoTokenizer | |
import argparse | |
from bs4 import BeautifulSoup | |
import requests | |
def split_essay_to_sentence(origin_essay): | |
origin_essay_sentence = sum([[a.strip() for a in i.split('.')] for i in origin_essay.split('\n')], []) | |
essay_sent = [a for a in origin_essay_sentence if len(a) > 0] | |
return essay_sent | |
def get_first_extraction(text_sentence): | |
row_dict = {} | |
for row in tqdm(text_sentence): | |
question = 'what is the feeling?' | |
answer = question_answerer(question=question, context=row) | |
row_dict[row] = answer | |
return row_dict | |
class myDataset_for_infer(torch.utils.data.Dataset): | |
def __init__(self, X): | |
self.X = X | |
def __len__(self): | |
return len(self.X) | |
def __getitem__(self,idx): | |
sentences = tokenizer(self.X[idx], return_tensors = 'pt', padding = 'max_length', max_length = 96, truncation = True) | |
return sentences | |
def infer_data(model, main_feeling_keyword): | |
#ds = myDataset_for_infer() | |
df_infer = myDataset_for_infer(main_feeling_keyword) | |
infer_dataloader = torch.utils.data.DataLoader(df_infer, batch_size= 16) | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
if device == 'cuda': | |
model = model.cuda() | |
result_list = [] | |
with torch.no_grad(): | |
for idx, infer_input in tqdm(enumerate(infer_dataloader)): | |
mask = infer_input['attention_mask'].to(device) | |
input_id = infer_input['input_ids'].squeeze(1).to(device) | |
output = model(input_id, mask) | |
result = np.argmax(output.logits, axis=1).numpy() | |
result_list.extend(result) | |
return result_list | |
def get_word_emotion_pair(cls_model, origin_essay_sentence, idx2emo): | |
import re | |
def get_noun(sent): | |
return [w for (w, p) in pos_tag(word_tokenize(p_texts[0])) if len(w) > 1 and p in (['NN','N','NP'])] | |
def get_adj(sent): | |
return [w for (w, p) in pos_tag(word_tokenize(p_texts[0])) if len(w) > 1 and p in (['ADJ'])] | |
def get_verb(sent): | |
return [w for (w, p) in pos_tag(word_tokenize(p_texts[0])) if len(w) > 1 and p in (['VERB'])] | |
result_list = infer_data(cls_model, origin_essay_sentence) | |
final_result = pd.DataFrame(data = {'text': origin_essay_sentence , 'label' : result_list}) | |
final_result['emotion'] = final_result['label'].map(idx2emo) | |
final_result['noun_list'] = final_result['text'].map(get_noun) | |
final_result['adj_list'] = final_result['text'].map(get_adj) | |
final_result['verb_list'] = final_result['text'].map(get_verb) | |
final_result['title'] = 'none' | |
file_made_dt = datetime.datetime.now() | |
file_made_dt_str = datetime.datetime.strftime(file_made_dt, '%Y%m%d_%H%M%d') | |
os.makedirs(f'./result/{nickname}/{file_made_dt_str}/', exist_ok = True) | |
final_result.to_csv(f"./result/{nickname}/{file_made_dt_str}/essay_result.csv", index = False) | |
return final_result, file_made_dt_str | |
return final_result, file_made_dt_str | |
def get_essay_base_analysis(file_made_dt_str, nickname): | |
essay1 = pd.read_csv(f"./result/{nickname}/{file_made_dt_str}/essay_result.csv") | |
essay1['noun_list_len'] = essay1['noun_list'].apply(lambda x : len(x)) | |
essay1['noun_list_uniqlen'] = essay1['noun_list'].apply(lambda x : len(set(x))) | |
essay1['adj_list_len'] = essay1['adj_list'].apply(lambda x : len(x)) | |
essay1['adj_list_uniqlen'] = essay1['adj_list'].apply(lambda x : len(set(x))) | |
essay1['vocab_all'] = essay1[['noun_list','adj_list']].apply(lambda x : sum((eval(x[0]),eval(x[1])), []), axis=1) | |
essay1['vocab_cnt'] = essay1['vocab_all'].apply(lambda x : len(x)) | |
essay1['vocab_unique_cnt'] = essay1['vocab_all'].apply(lambda x : len(set(x))) | |
essay1['noun_list'] = essay1['noun_list'].apply(lambda x : eval(x)) | |
essay1['adj_list'] = essay1['adj_list'].apply(lambda x : eval(x)) | |
d = essay1.groupby('title')[['noun_list','adj_list']].sum([]).reset_index() | |
d['noun_cnt'] = d['noun_list'].apply(lambda x : len(set(x))) | |
d['adj_cnt'] = d['adj_list'].apply(lambda x : len(set(x))) | |
# 문장 기준 최고 감정 | |
essay_summary =essay1.groupby(['title'])['emotion'].value_counts().unstack(level =1) | |
emo_vocab_dict = {} | |
for k, v in essay1[['emotion','noun_list']].values: | |
for vocab in v: | |
if (k, 'noun', vocab) not in emo_vocab_dict: | |
emo_vocab_dict[(k, 'noun', vocab)] = 0 | |
emo_vocab_dict[(k, 'noun', vocab)] += 1 | |
for k, v in essay1[['emotion','adj_list']].values: | |
for vocab in v: | |
if (k, 'adj', vocab) not in emo_vocab_dict: | |
emo_vocab_dict[(k, 'adj', vocab)] = 0 | |
emo_vocab_dict[(k, 'adj', vocab)] += 1 | |
vocab_emo_cnt_dict = {} | |
for k, v in essay1[['emotion','noun_list']].values: | |
for vocab in v: | |
if (vocab, 'noun') not in vocab_emo_cnt_dict: | |
vocab_emo_cnt_dict[('noun', vocab)] = {} | |
if k not in vocab_emo_cnt_dict[( 'noun', vocab)]: | |
vocab_emo_cnt_dict[( 'noun', vocab)][k] = 0 | |
vocab_emo_cnt_dict[('noun', vocab)][k] += 1 | |
for k, v in essay1[['emotion','adj_list']].values: | |
for vocab in v: | |
if ('adj', vocab) not in vocab_emo_cnt_dict: | |
vocab_emo_cnt_dict[( 'adj', vocab)] = {} | |
if k not in vocab_emo_cnt_dict[( 'adj', vocab)]: | |
vocab_emo_cnt_dict[( 'adj', vocab)][k] = 0 | |
vocab_emo_cnt_dict[('adj', vocab)][k] += 1 | |
vocab_emo_cnt_df = pd.DataFrame(vocab_emo_cnt_dict).T | |
vocab_emo_cnt_df['total'] = vocab_emo_cnt_df.sum(axis=1) | |
# 단어별 최고 감정 및 감정 개수 | |
all_result=vocab_emo_cnt_df.sort_values(by = 'total', ascending = False) | |
# 단어별 최고 감정 및 감정 개수 , 형용사 포함 시 | |
adj_result=vocab_emo_cnt_df.sort_values(by = 'total', ascending = False) | |
# 명사만 사용 시 | |
noun_result=vocab_emo_cnt_df[vocab_emo_cnt_df.index.get_level_values(0) == 'noun'].sort_values(by = 'total', ascending = False) | |
final_file_name = f"essay_all_vocab_result.csv" | |
adj_file_name = f"essay_adj_vocab_result.csv" | |
noun_file_name = f"essay_noun_vocab_result.csv" | |
os.makedirs(f'./result/{nickname}/{file_made_dt_str}/', exist_ok = True) | |
all_result.to_csv(f"./result/{nickname}/{file_made_dt_str}/essay_all_vocab_result.csv", index = False) | |
adj_result.to_csv(f"./result/{nickname}/{file_made_dt_str}/essay_adj_vocab_result.csv", index = False) | |
noun_result.to_csv(f"./result/{nickname}/{file_made_dt_str}/essay_noun_vocab_result.csv", index = False) | |
return all_result, adj_result, noun_result, essay_summary, file_made_dt_str | |
from transformers import AutoModelForSequenceClassification | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
def all_process(origin_essay, nickname): | |
essay_sent =split_essay_to_sentence(origin_essay) | |
idx2emo = {0: 'Anger', 1: 'Sadness', 2: 'Anxiety', 3: 'Hurt', 4: 'Embarrassment', 5: 'Joy'} | |
tokenizer = AutoTokenizer.from_pretrained('seriouspark/xlm-roberta-base-finetuning-sentimental-6label') | |
cls_model = AutoModelForSequenceClassification.from_pretrained('seriouspark/xlm-roberta-base-finetuning-sentimental-6label') | |
final_result, file_name_dt = get_word_emotion_pair(cls_model, essay_sent, idx2emo) | |
all_result, adj_result, noun_result, essay_summary, file_made_dt_str = get_essay_base_analysis(file_name_dt, nickname) | |
summary_result = pd.concat([adj_result, noun_result]).fillna(0).sort_values(by = 'total', ascending = False).fillna(0).reset_index()[:30] | |
with open(f'./result/{nickname}/{file_name_dt}/summary.json','w') as f: | |
json.dump( essay_summary.to_json(),f) | |
with open(f'./result/{nickname}/{file_made_dt_str}/all_result.json','w') as f: | |
json.dump( all_result.to_json(),f) | |
with open(f'./result/{nickname}/{file_made_dt_str}/adj_result.json','w') as f: | |
json.dump( adj_result.to_json(),f) | |
with open(f'./result/{nickname}/{file_made_dt_str}/noun_result.json','w') as f: | |
json.dump( noun_result.to_json(),f) | |
#return essay_summary, summary_result | |
total_cnt = essay_summary.sum(axis=1).values[0] | |
essay_summary_list = sorted(essay_summary.T.to_dict()['none'].items(), key = lambda x: x[1], reverse =True) | |
essay_summary_list_str = ' '.join([f'{row[0]} {int(row[1]*100 / total_cnt)}%' for row in essay_summary_list]) | |
summary1 = f"""{nickname}, Your sentiments in your writting are [{essay_summary_list_str}] """ | |
return summary1 | |
def get_similar_vocab(message): | |
if (len(message) > 0) & (len(re.findall('[A-Za-z]+', message))> 0): | |
vocab = message | |
all_dict_url = f"https://www.dictionary.com/browse/{vocab}" | |
response = requests.get(all_dict_url) | |
html_content = response.text | |
# BeautifulSoup로 HTML 파싱 | |
soup = BeautifulSoup(html_content, 'html.parser') | |
result = soup.find_all(class_='ESah86zaufmd2_YPdZtq') | |
p_texts = [p.get_text() for p in soup.find_all('p')] | |
whole_vocab = sum([ [word for word , pos in pos_tag(word_tokenize(text)) if pos in ['NN','JJ','NNP','NNS']] for text in p_texts],[]) | |
similar_words_final = Counter(whole_vocab).most_common(10) | |
return [i[0] for i in similar_words_final] | |
else: | |
return message | |
def get_similar_means(vocab): | |
all_dict_url = f"https://www.dictionary.com/browse/{vocab}" | |
response = requests.get(all_dict_url) | |
html_content = response.text | |
soup = BeautifulSoup(html_content, 'html.parser') | |
result = soup.find_all(class_='ESah86zaufmd2_YPdZtq') | |
p_texts = [p.get_text() for p in soup.find_all('p')] | |
return p_texts[:10] | |
info_dict = {} | |
def run_all(message, history): | |
global info_dict | |
if message.find('NICKNAME:')>=0: | |
global nickname | |
nickname = message.replace('NICKNAME','').replace(':','').strip() | |
#global nickname | |
info_dict[nickname] = {} | |
return f'''Good [{nickname}]!! Let's start!. | |
Give me a vocabulary in your mind. | |
\n\n\nwhen you type the vocab, please include \"VOCAB: \" | |
e.g <VOCAB: orange> | |
''' | |
try : | |
#print(nickname) | |
if message.find('VOCAB:')>=0: | |
clear_message = message.replace('VOCAB','').replace(':','').strip() | |
info_dict[nickname]['main_word'] = clear_message | |
vocab_mean_list = [] | |
similar_words_final = get_similar_vocab(clear_message) | |
print(similar_words_final) | |
similar_words_final_with_main = similar_words_final + [clear_message] | |
if len(similar_words_final_with_main)>0: | |
for w in similar_words_final_with_main: | |
temp_means = get_similar_means(w) | |
vocab_mean_list.append(temp_means[:2]) | |
fixed_similar_words_final = list(set([i for i in sum(vocab_mean_list, []) if len(i) > 10]))[:10] | |
word_str = ' \n'.join([str(idx) + ") " + i for idx, i in enumerate(similar_words_final, 1)]) | |
sentence_str = ' \n'.join([str(idx) + ") " + i for idx, i in enumerate(fixed_similar_words_final, 1)]) | |
return f'''Let's start writing with the VOCAB<{clear_message}>! | |
First, how about those similar words? | |
{word_str} \n | |
The word has these meanings. | |
{sentence_str}\n | |
Pick and type one meaning of these list. | |
\n\n\n When you type in, please include \"SENT:\", like this. | |
\n e.g. <SENT: a globose, reddish-yellow, bitter or sweet, edible citrus fruit. > | |
''' | |
else: | |
return 'Include \"VOCAB:\" please (VOCAB: orange)' | |
elif message.find('SENT:')>=0: | |
clear_message = message.replace('SENT','').replace(':','').strip() | |
info_dict[nickname]['selected_sentence'] = clear_message | |
return f'''You've got [{clear_message}]. | |
\n With this sentence, we can make creative short writings | |
\n\n\n Include \"SHORT_W: \", please. | |
\n e.g <SHORT_W: Whenever I smell the citrus, I always reminise him, first> | |
''' | |
elif message.find('SHORT_W:')>=0: | |
clear_message = message.replace('SHORT_W','').replace(':','').strip() | |
info_dict[nickname]['short_contents'] = clear_message | |
return f'''This is your short sentence <{clear_message}> . | |
\n With this sentence, let's step one more thing, please write long sentences more than 500 words. | |
\n\n\n When you input, please include\"LONG_W: \" like this. | |
\n e.g <LONG_W: He enjoyed wearing blue T-shirts at the gym, but the intense citrus scent he used on his clothes was noticeably excessive ... > | |
''' | |
elif message.find('LONG_W:')>=0: | |
long_message = message.replace('LONG_W','').replace(':','').strip() | |
length_of_lm = len(long_message) | |
if length_of_lm >= 500: | |
info_dict['long_contents'] = long_message | |
os.makedirs(f"./result/{nickname}/", exist_ok = True) | |
with open(f"./result/{nickname}/contents.txt",'w') as f: | |
f.write(long_message) | |
return f'Your entered text is {length_of_lm} characters. This text is worth analyzing. If you wish to start the analysis, please type "START ANALYSIS"' | |
else : | |
return f'The text you have entered is {length_of_lm} characters. It\'s a bit short for analysis. Could you please provide a bit more sentences' | |
elif message.find('START ANALYSIS')>=0: | |
with open(f"./result/{nickname}/contents.txt",'r') as f: | |
orign_essay = f.read() | |
summary = all_process(orign_essay, nickname) | |
#print(summary) | |
return summary | |
else: | |
return 'Please start from the beginning' | |
except: | |
return 'An error has occurred. Restarting from the beginning. Please enter your NICKNAME:' | |
import gradio as gr | |
import requests | |
history = [] | |
info_dict = {} | |
iface = gr.ChatInterface( | |
fn=run_all, | |
chatbot = gr.Chatbot(), | |
textbox = gr.Textbox(placeholder="Please enter including the chatbot's request prefix.", container = True, scale = 7), | |
title = 'MooGeulMooGeul', | |
description = "Please start by choosing your nickname. Include 'NICKNAME: ' in your response", | |
theme = 'soft', | |
examples = ['NICKNAME: bluebottle', | |
'VOCAB: orange', | |
'SENT: a globose, reddish-yellow, bitter or sweet, edible citrus fruit.', | |
'SHORT_W: Whenever I smell the citrus, I always reminise him, first', | |
'''LONG_W: Whenever I smell citrus, I always think of him. He used to come to the gym wearing a blue T-shirt, often spraying a strong citrus scent. | |
That scent was quite distinctive, letting me know when he was passing by. | |
I usually arrived to work out between 7:00 and 7:30 AM, and interestingly, he would arrive about 10 minutes after me. | |
On days I came early, he did too; and when I was late, he was also late. | |
The citrus scent from his body was always so intense, as if he had just sprayed it.''' | |
], | |
cache_examples = False, | |
retry_btn = None, | |
undo_btn = 'Delete Previous', | |
clear_btn = 'Clear', | |
) | |
iface.launch(share=True) | |