Spaces:
Sleeping
Sleeping
File size: 14,204 Bytes
37ee4a4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 |
import cv2
from matplotlib import pyplot as plt
import numpy as np
import torch
from PIL import Image, ImageDraw, ImageFont
from datetime import datetime
import os
from typing import List, Dict
def convert_and_resize_mask(mask):
if mask.ndim == 3:
mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
resized_mask = cv2.resize(mask, (1024, 1024))
return resized_mask
def add_masks_resized(masks):
final_mask = np.zeros((1024, 1024), dtype=np.uint8)
for mask in masks:
if mask is not None:
resized_mask = convert_and_resize_mask(mask)
resized_mask = resized_mask.astype(np.uint8)
final_mask = cv2.add(final_mask, resized_mask)
return final_mask
def attend_mask(mask_file, attend_scale=10, save=False):
if isinstance(mask_file, str):
if mask_file == '':
return torch.zeros([1, 1, 128, 128], dtype=torch.float32).cuda()
else:
image_with_mask = cv2.imread(mask_file, cv2.IMREAD_GRAYSCALE)
elif len(mask_file.shape) == 3: # convert RGB to gray
image_with_mask = cv2.cvtColor(mask_file, cv2.COLOR_BGR2GRAY)
else:
image_with_mask = mask_file
if attend_scale != 0:
kernel = np.ones((abs(attend_scale), abs(attend_scale)), np.uint8)
if attend_scale > 0:
image_with_mask = cv2.dilate(image_with_mask, kernel, iterations=1)
else:
image_with_mask = cv2.erode(image_with_mask, kernel, iterations=1)
if save and isinstance(mask_file, str):
new_mask_file_name = mask_file[:-4]+'_'+str(attend_scale)+'.jpg'
cv2.imwrite(new_mask_file_name, image_with_mask)
print("new_mask is saved in ", new_mask_file_name)
dilated_image= cv2.resize(image_with_mask, (128, 128), interpolation=cv2.INTER_NEAREST)
dilated_image = torch.from_numpy(dilated_image).to(torch.float32).unsqueeze(0).unsqueeze(0).cuda() / 255
return dilated_image
def panning(img_path=None, op_list=[['left', 0.2]], save=False, save_dir=None):
if isinstance(img_path, str):
img = cv2.imread(img_path)
else:
img = img_path
img_new = img.copy()
img_height, img_width, _ = img.shape
w_mask = 255 * np.ones((img_height, img_width), dtype=np.uint8)
h_mask = 255 * np.ones((img_height, img_width), dtype=np.uint8)
for op in op_list:
scale = op[1]
if op[0] in ['right', 'left']:
K = int(scale*img_width)
elif op[0] in ['up', 'down']:
K = int(scale*img_height)
if op[0] == 'right':
img_new[:, K:, :] = img[:, 0:img_width-K, :]
w_mask[:, K:] = 0
elif op[0] == 'left':
img_new[:, 0:img_width-K, :] = img[:, K:, :]
w_mask[:, 0:img_width-K] = 0
elif op[0] == 'down':
img_new[K:, :, :] = img[0:img_height-K, :, :]
h_mask[K:, :] = 0
elif op[0] == 'up':
img_new[0:img_height-K, :, :] = img[K:, :, :]
h_mask[0:img_height-K, :] = 0
img = img_new
mask = w_mask + h_mask
mask[mask>0] = 255
if save:
if save_dir is None:
base_dir = os.path.dirname(img_path)
save_dir = os.path.join(base_dir, 'preprocess')
elif not os.path.exists(save_dir):
os.makedirs(save_dir)
resized_img_name = f"{save_dir}/resized_image.png"
resized_mask_name = f"{save_dir}/resized_mask.png"
cv2.imwrite(resized_img_name, img_new)
cv2.imwrite(resized_mask_name, mask)
return resized_img_name, resized_mask_name
else:
return img_new, mask
def zooming(img_path=None, scale=[0.8, 0.8], save=False, save_dir=None):
if isinstance(img_path, str):
img = cv2.imread(img_path)
else:
img = img_path
img_new = img.copy()
img_height, img_width, _ = img.shape
mask = 255 * np.ones((img_height, img_width), dtype=np.uint8)
new_height = int(img_height*scale[0])
new_width = int(img_width*scale[1])
resized_img = cv2.resize(img, (new_width, new_height), interpolation=cv2.INTER_AREA)
x_offset = (img_width - new_width) // 2
y_offset = (img_height - new_height) // 2
img_new[y_offset:y_offset + new_height, x_offset:x_offset + new_width] = resized_img
mask[y_offset:y_offset + new_height, x_offset:x_offset + new_width] = 0
if save:
if save_dir is None:
base_dir = os.path.dirname(img_path)
save_dir = os.path.join(base_dir, 'preprocess')
elif not os.path.exists(save_dir):
os.makedirs(save_dir)
resized_img_name = f"{save_dir}/resized_image.png"
resized_mask_name = f"{save_dir}/resized_mask.png"
cv2.imwrite(resized_img_name, img_new)
cv2.imwrite(resized_mask_name, mask)
return resized_img_name, resized_mask_name
else:
return img_new, mask
def get_box(mask, bias = 2):
nonzero_indices = torch.nonzero(mask)
H, W = mask.shape[-2:]
min_x = max(min(nonzero_indices[:, 1]) - bias, 0)
min_y = max(min(nonzero_indices[:, 0]) - bias, 0)
max_x = min(max(nonzero_indices[:, 1]) + bias, W)
max_y = min(max(nonzero_indices[:, 0]) + bias, H)
return (min_x, min_y, max_x, max_y)
def draw_axis(img,grid_dict,x_len,y_len):
if grid_dict is not None and grid_dict is not False:
assert isinstance(grid_dict,Dict)
assert "x_title" in grid_dict
assert "y_title" in grid_dict
assert "x_text_list" in grid_dict
assert "y_text_list" in grid_dict
x_title=grid_dict["x_title"]
y_title=grid_dict["y_title"]
x_text_list=grid_dict['x_text_list']
y_text_list=grid_dict['y_text_list']
assert len(y_text_list)==y_len
assert len(x_text_list)==x_len
assert "font_size" in grid_dict
font_size=grid_dict["font_size"]
if "x_color" in grid_dict:
color_x=grid_dict['x_color']
else:
color_x="black"
if "y_color" in grid_dict:
color_y=grid_dict['y_color']
else:
color_y="black"
if "num_decimals" in grid_dict:
num_decimals=grid_dict['num_decimals']
else:
num_decimals=2
if "shift_x" in grid_dict:
shift_x_x,shift_x_y=grid_dict['shift_x']
else:
shift_x_x=shift_x_y=0
if "shift_y" in grid_dict:
shift_y_x,shift_y_y=grid_dict['shift_y']
else:
shift_y_x=shift_y_y=0
if "title" in grid_dict:
title=grid_dict['title']
if isinstance(title,List):
all_title=""
for s in title:
all_title=all_title+s+"\n"
title=all_title
else:
title=''
width, height = img.size
num_x=x_len
num_y=y_len
new_img = Image.new("RGB", (width + width // num_x+width // (num_x*2), height + height // num_y+height // (num_y*2)), color=(255, 255, 255))
width,height=(width + width // num_x, height + height // num_y)
num_x=num_x+1
num_y=num_y+1
new_img.paste(img, (width // num_x, height // num_y))
draw = ImageDraw.Draw(new_img)
font = ImageFont.truetype("DejaVuSansMono.ttf", font_size)
for i in range(2, num_x+1):
x = (i - 1) * width // num_x + width // (num_x * 2)-width *0.2// num_x+shift_x_x
y = height // (num_y * 2)+shift_x_y
k=i-1
if isinstance(x_text_list[i-2],str):
draw.text((x, y), x_text_list[i-2], font=font,fill=color_x,align="center")
else:
draw.text((x, y), "{:.{}f}".format(x_text_list[i-2],num_decimals), font=font,fill=color_x,align="center")
for i in range(2, num_y+1):
x = width // (num_x * 2)-width *0.1// num_x+shift_y_x
y = (i - 1) * height // num_y + height // (num_y * 2)-height*0.1//num_y+shift_y_y
k = i - 1
if isinstance(y_text_list[i-2],str):
draw.text((x, y), y_text_list[i-2], font=font,fill=color_y,align="center")
else:
draw.text((x, y), "{:.{}f}".format(y_text_list[i-2],num_decimals), font=font,fill=color_y,align="center")
i=1
x = (i - 1) * width // num_x + width // (num_x * 2)-height*0.1//num_y+shift_y_x
y = height // (num_y * 2)+width *0.2// num_x+shift_y_y
draw.text((x, y), y_title, font=font, fill=color_y,align="center")
x = width // (num_x * 2)+width *0.2// num_x+shift_x_x
y = (i - 1) * height // num_y + height // (num_y * 2)+shift_x_y
draw.text((x, y), x_title, font=font, fill=color_x,align="left")
x = width // 4
y = (i - 1) * height // num_y + height // (num_y * 10)
draw.text((x, y), title, font=font, fill='blue',align="left")
else:
new_img=img
return new_img
def view_images(images, num_rows=1, offset_ratio=0.02,text="",folder=None,Notimestamp=False,
grid_dict=None,subfolder=None,verbose=True,output_dir=None,timestamp=None,**kwargs):
if type(images) is list:
num_empty = len(images) % num_rows
elif images.ndim == 4:
num_empty = images.shape[0] % num_rows
else:
images = [images]
num_empty = 0
origin_size=kwargs.get("origin_size",None)
images_copy=images.copy()
for i, per_image in enumerate(images_copy):
if isinstance(per_image, Image.Image) and origin_size is not None:
images[i] = np.array(per_image.resize((origin_size[1],origin_size[0])))
else:
images[i] = np.array(per_image)
empty_images = np.ones(images[0].shape, dtype=np.uint8) * 255
images = [image.astype(np.uint8) for image in images] + [empty_images] * num_empty
num_items = len(images)
h, w, c = images[0].shape
offset = int(h * offset_ratio)
num_cols = num_items // num_rows
image_ = np.ones((h * num_rows + offset * (num_rows - 1),
w * num_cols + offset * (num_cols - 1), 3), dtype=np.uint8) * 255
for i in range(num_rows):
for j in range(num_cols):
image_[i * (h + offset): i * (h + offset) + h:, j * (w + offset): j * (w + offset) + w] = images[
i * num_cols + j]
pil_img = Image.fromarray(image_)
pil_img_=draw_axis(pil_img,grid_dict,num_cols,num_rows)
if pil_img_.size[0]==pil_img_.size[1]:
pil_img_.resize((2048,2048))
else:
longer_side = max(pil_img.size)
ratio = 2048/longer_side
new_size = tuple([int(x*ratio) for x in pil_img.size])
pil_img = pil_img.resize(new_size)
if verbose is False:
return pil_img
now = datetime.now()
if timestamp is None:
if Notimestamp is False:
timestamp = now.strftime("%Y-%m-%d_%H-%M-%S")
else:
timestamp=""
if output_dir is None:
if timestamp != "":
date, time = timestamp.split('_')
else:
date, time = "",""
if folder is not None:
dirname="./"+folder
filename = text+f"img_{timestamp}.jpg"
else:
if subfolder is not None:
dirname=os.path.join("./img", subfolder,date)
dirname=os.path.join(dirname,time)
filename =text+f"img_{timestamp}.jpg"
else:
dirname=os.path.join("./img",date)
dirname=os.path.join(dirname,time)
filename =text+f"img_{timestamp}.jpg"
else:
dirname=output_dir
filename =text+f"img_{timestamp}.jpg"
if not os.path.exists(dirname):
os.makedirs(dirname)
if verbose is True:
for i, img in enumerate(images):
im = Image.fromarray(img)
im.save(os.path.join(dirname,f"{i}.jpg"))
print(f"Output dir: {dirname}")
pil_img.save(os.path.join(dirname, filename))
if grid_dict is not None and grid_dict is not False:
if not os.path.exists(dirname):
os.makedirs(dirname)
pil_img_.save(os.path.join(dirname, filename[:-4]+"_2048x.jpg"))
def resize_image_with_mask(img, mask, scale):
if scale == 1:
return img, mask, None
img_blackboard = img.copy() # canvas
mask_blackboard = np.zeros_like(mask)
M = cv2.moments(mask)
cx = int(M["m10"] / M["m00"])
cy = int(M["m01"] / M["m00"])
scale_factor = [scale, scale]
resized_img = cv2.resize(img, None, fx=scale_factor[0], fy=scale_factor[1], interpolation=cv2.INTER_AREA)
resized_mask = cv2.resize(mask, None, fx=scale_factor[0], fy=scale_factor[1], interpolation=cv2.INTER_AREA)
new_cx, new_cy = cx * scale_factor[0], cy * scale_factor[1]
for y in range(resized_mask.shape[0]):
for x in range(resized_mask.shape[1]):
if 0 <= cy - (new_cy - y) < img.shape[0] and 0 <= cx - (new_cx - x) < img.shape[1]:
mask_blackboard[int(cy - (new_cy - y)), int(cx - (new_cx - x))] = resized_mask[y, x]
img_blackboard[int(cy - (new_cy - y)), int(cx - (new_cx - x))] = resized_img[y, x]
return img_blackboard, mask_blackboard, (cx, cy)
def flip_image_with_mask(img, mask, flip_code=None):
if flip_code is None:
return img, mask, None
M = cv2.moments(mask)
if M["m00"] == 0:
return img, mask
cx = int(M["m10"] / M["m00"])
cy = int(M["m01"] / M["m00"])
h, w = img.shape[:2]
img_center = (w // 2, h // 2)
tx = img_center[0] - cx
ty = img_center[1] - cy
M_translate = np.float32([[1, 0, tx], [0, 1, ty]])
img_translated = cv2.warpAffine(img, M_translate, (w, h))
mask_translated = cv2.warpAffine(mask, M_translate, (w, h))
flipped_img = cv2.flip(img_translated, flip_code)
flipped_mask = cv2.flip(mask_translated, flip_code)
M_translate_back = np.float32([[1, 0, -tx], [0, 1, -ty]])
flipped_img_back = cv2.warpAffine(flipped_img, M_translate_back, (w, h))
flipped_mask_back = cv2.warpAffine(flipped_mask, M_translate_back, (w, h))
return flipped_img_back, flipped_mask_back, (cx, cy)
|