File size: 14,204 Bytes
37ee4a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
import cv2
from matplotlib import pyplot as plt
import numpy as np
import torch
from PIL import Image, ImageDraw, ImageFont
from datetime import datetime
import os
from typing import List, Dict

def convert_and_resize_mask(mask):
    if mask.ndim == 3:
        mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
    resized_mask = cv2.resize(mask, (1024, 1024))       
    return resized_mask

def add_masks_resized(masks):
    final_mask = np.zeros((1024, 1024), dtype=np.uint8)         
    for mask in masks:
        if mask is not None:
            resized_mask = convert_and_resize_mask(mask)
            resized_mask = resized_mask.astype(np.uint8)
            final_mask = cv2.add(final_mask, resized_mask)
    return final_mask

def attend_mask(mask_file, attend_scale=10, save=False):
    if isinstance(mask_file, str):
        if mask_file == '':
            return torch.zeros([1, 1, 128, 128], dtype=torch.float32).cuda()
        else:
            image_with_mask = cv2.imread(mask_file, cv2.IMREAD_GRAYSCALE)
    elif len(mask_file.shape) == 3: # convert RGB to gray
        image_with_mask = cv2.cvtColor(mask_file, cv2.COLOR_BGR2GRAY)
    
    else:
        image_with_mask = mask_file

    if attend_scale != 0:
        kernel = np.ones((abs(attend_scale), abs(attend_scale)), np.uint8)        
        if attend_scale > 0:
            image_with_mask = cv2.dilate(image_with_mask, kernel, iterations=1)
        else:
            image_with_mask = cv2.erode(image_with_mask, kernel, iterations=1)
        
        if save and isinstance(mask_file, str):
            new_mask_file_name = mask_file[:-4]+'_'+str(attend_scale)+'.jpg'
            cv2.imwrite(new_mask_file_name, image_with_mask)
            print("new_mask is saved in ", new_mask_file_name)

    dilated_image= cv2.resize(image_with_mask, (128, 128), interpolation=cv2.INTER_NEAREST)
    dilated_image = torch.from_numpy(dilated_image).to(torch.float32).unsqueeze(0).unsqueeze(0).cuda() / 255 
    return dilated_image


def panning(img_path=None, op_list=[['left', 0.2]], save=False, save_dir=None):
    if isinstance(img_path, str):
        img = cv2.imread(img_path)
    else:
        img = img_path
    img_new = img.copy()
    img_height, img_width, _ = img.shape
    w_mask = 255 * np.ones((img_height, img_width), dtype=np.uint8)
    h_mask = 255 * np.ones((img_height, img_width), dtype=np.uint8)

    for op in op_list:
        scale = op[1]
        if op[0] in ['right', 'left']:
            K = int(scale*img_width)
        elif op[0] in ['up', 'down']:
            K = int(scale*img_height)
      
        if op[0] == 'right':
            img_new[:, K:, :] = img[:, 0:img_width-K, :]
            w_mask[:, K:] = 0
        elif op[0] == 'left':
            img_new[:, 0:img_width-K, :] = img[:, K:, :]
            w_mask[:, 0:img_width-K] = 0
        elif op[0] == 'down':
            img_new[K:, :, :] = img[0:img_height-K, :, :]
            h_mask[K:, :] = 0
        elif op[0] == 'up':
            img_new[0:img_height-K, :, :] = img[K:, :, :]
            h_mask[0:img_height-K, :] = 0
        img = img_new
    
    mask = w_mask + h_mask
    mask[mask>0] = 255
    
    if save:
        if save_dir is None:
            base_dir = os.path.dirname(img_path)
            save_dir = os.path.join(base_dir, 'preprocess')
        elif not os.path.exists(save_dir):
            os.makedirs(save_dir)
        resized_img_name = f"{save_dir}/resized_image.png"
        resized_mask_name = f"{save_dir}/resized_mask.png"
        cv2.imwrite(resized_img_name, img_new)
        cv2.imwrite(resized_mask_name, mask)
        return resized_img_name, resized_mask_name
    else:
        return img_new, mask

def zooming(img_path=None, scale=[0.8, 0.8], save=False, save_dir=None):
    if isinstance(img_path, str):
        img = cv2.imread(img_path)
    else:
        img = img_path
    img_new = img.copy()
    img_height, img_width, _ = img.shape
    mask = 255 * np.ones((img_height, img_width), dtype=np.uint8)

    new_height = int(img_height*scale[0])
    new_width = int(img_width*scale[1])
    resized_img = cv2.resize(img, (new_width, new_height), interpolation=cv2.INTER_AREA)
    x_offset = (img_width - new_width) // 2
    y_offset = (img_height - new_height) // 2

    img_new[y_offset:y_offset + new_height, x_offset:x_offset + new_width] = resized_img
    mask[y_offset:y_offset + new_height, x_offset:x_offset + new_width] = 0

    if save:
        if save_dir is None:
            base_dir = os.path.dirname(img_path)
            save_dir = os.path.join(base_dir, 'preprocess')
        elif not os.path.exists(save_dir):
            os.makedirs(save_dir)

        resized_img_name = f"{save_dir}/resized_image.png"
        resized_mask_name = f"{save_dir}/resized_mask.png"
        cv2.imwrite(resized_img_name, img_new)
        cv2.imwrite(resized_mask_name, mask)
        return resized_img_name, resized_mask_name
    else:
        return img_new, mask

def get_box(mask, bias = 2):
    nonzero_indices = torch.nonzero(mask)
    H, W = mask.shape[-2:]
    min_x = max(min(nonzero_indices[:, 1]) - bias, 0)
    min_y = max(min(nonzero_indices[:, 0]) - bias, 0)
    max_x = min(max(nonzero_indices[:, 1]) + bias, W)
    max_y = min(max(nonzero_indices[:, 0]) + bias, H)
    return (min_x, min_y, max_x, max_y)


def draw_axis(img,grid_dict,x_len,y_len):
    if grid_dict is not None and grid_dict is not False:
        assert isinstance(grid_dict,Dict)
        assert "x_title" in grid_dict
        assert "y_title" in grid_dict
        assert "x_text_list" in grid_dict
        assert "y_text_list" in grid_dict
        x_title=grid_dict["x_title"]
        y_title=grid_dict["y_title"]
        x_text_list=grid_dict['x_text_list']
        y_text_list=grid_dict['y_text_list']
        assert len(y_text_list)==y_len
        assert len(x_text_list)==x_len
        assert "font_size" in grid_dict
        font_size=grid_dict["font_size"]
        if "x_color" in grid_dict:
            color_x=grid_dict['x_color']
        else:
            color_x="black"
        if "y_color" in grid_dict:
            color_y=grid_dict['y_color']
        else:
            color_y="black"
        if "num_decimals" in grid_dict:
            num_decimals=grid_dict['num_decimals']
        else:
            num_decimals=2
        if "shift_x" in grid_dict:
            shift_x_x,shift_x_y=grid_dict['shift_x']
        else:
            shift_x_x=shift_x_y=0
        if "shift_y" in grid_dict:
            shift_y_x,shift_y_y=grid_dict['shift_y']
        else:
            shift_y_x=shift_y_y=0
        if "title" in grid_dict:
            title=grid_dict['title']
            if isinstance(title,List):
                all_title=""
                for s in title:
                    all_title=all_title+s+"\n"
                title=all_title
        else:
            title=''
        width, height = img.size
        num_x=x_len
        num_y=y_len

        new_img = Image.new("RGB", (width + width // num_x+width // (num_x*2), height + height // num_y+height // (num_y*2)), color=(255, 255, 255))
        width,height=(width + width // num_x, height + height // num_y)
        num_x=num_x+1
        num_y=num_y+1
        new_img.paste(img, (width // num_x, height // num_y))

        draw = ImageDraw.Draw(new_img)

        font = ImageFont.truetype("DejaVuSansMono.ttf", font_size)
        for i in range(2, num_x+1):
            x = (i - 1) * width // num_x + width // (num_x * 2)-width *0.2// num_x+shift_x_x
            y = height // (num_y * 2)+shift_x_y
            k=i-1
            if  isinstance(x_text_list[i-2],str):
                draw.text((x, y), x_text_list[i-2], font=font,fill=color_x,align="center")
            else:
                draw.text((x, y), "{:.{}f}".format(x_text_list[i-2],num_decimals), font=font,fill=color_x,align="center")

        for i in range(2, num_y+1):
            x = width // (num_x * 2)-width *0.1// num_x+shift_y_x
            y = (i - 1) * height // num_y + height // (num_y * 2)-height*0.1//num_y+shift_y_y
            k = i - 1
            if isinstance(y_text_list[i-2],str):
                draw.text((x, y), y_text_list[i-2], font=font,fill=color_y,align="center")
            else:
                draw.text((x, y), "{:.{}f}".format(y_text_list[i-2],num_decimals), font=font,fill=color_y,align="center")
        i=1
        x = (i - 1) * width // num_x + width // (num_x * 2)-height*0.1//num_y+shift_y_x
        y = height // (num_y * 2)+width *0.2// num_x+shift_y_y
        draw.text((x, y), y_title, font=font, fill=color_y,align="center")
        x = width // (num_x * 2)+width *0.2// num_x+shift_x_x
        y = (i - 1) * height // num_y + height // (num_y * 2)+shift_x_y
        draw.text((x, y), x_title, font=font, fill=color_x,align="left")
        x = width // 4
        y = (i - 1) * height // num_y + height // (num_y * 10)
        draw.text((x, y), title, font=font, fill='blue',align="left")
    else:

        new_img=img
    return new_img

def view_images(images, num_rows=1, offset_ratio=0.02,text="",folder=None,Notimestamp=False,
grid_dict=None,subfolder=None,verbose=True,output_dir=None,timestamp=None,**kwargs):
    if type(images) is list:
        num_empty = len(images) % num_rows
    elif images.ndim == 4:
        num_empty = images.shape[0] % num_rows
    else:
        images = [images]
        num_empty = 0
    origin_size=kwargs.get("origin_size",None)
    images_copy=images.copy()
    for i, per_image in enumerate(images_copy):
        if isinstance(per_image, Image.Image) and origin_size is not None:
            images[i] = np.array(per_image.resize((origin_size[1],origin_size[0])))
        else:
            images[i] = np.array(per_image)
        
    empty_images = np.ones(images[0].shape, dtype=np.uint8) * 255
    images = [image.astype(np.uint8) for image in images] + [empty_images] * num_empty
    num_items = len(images)

    h, w, c = images[0].shape
    offset = int(h * offset_ratio)
    num_cols = num_items // num_rows
    image_ = np.ones((h * num_rows + offset * (num_rows - 1),
                      w * num_cols + offset * (num_cols - 1), 3), dtype=np.uint8) * 255
    for i in range(num_rows):
        for j in range(num_cols):
            image_[i * (h + offset): i * (h + offset) + h:, j * (w + offset): j * (w + offset) + w] = images[
                i * num_cols + j]

    pil_img = Image.fromarray(image_)

    pil_img_=draw_axis(pil_img,grid_dict,num_cols,num_rows)
    if pil_img_.size[0]==pil_img_.size[1]:
        pil_img_.resize((2048,2048))
    else:
        longer_side = max(pil_img.size)
        ratio = 2048/longer_side
        new_size = tuple([int(x*ratio) for x in pil_img.size])
        pil_img = pil_img.resize(new_size)

    if verbose is False:
        return pil_img
    now = datetime.now()
    if timestamp is None:
        if Notimestamp is False:
            timestamp = now.strftime("%Y-%m-%d_%H-%M-%S")
        else:
            timestamp=""
    if output_dir is None:
        if timestamp != "":
            date, time = timestamp.split('_')
        else:
            date, time = "",""
        if folder is not None:
            dirname="./"+folder
            filename = text+f"img_{timestamp}.jpg"
        else:
            if subfolder is not None:
                dirname=os.path.join("./img", subfolder,date)
                dirname=os.path.join(dirname,time)            
                filename =text+f"img_{timestamp}.jpg"
            else:
                dirname=os.path.join("./img",date)
                dirname=os.path.join(dirname,time)
                filename =text+f"img_{timestamp}.jpg"
    else:
        dirname=output_dir
        filename =text+f"img_{timestamp}.jpg"
    if not os.path.exists(dirname):
        os.makedirs(dirname)
    if verbose is True:
        for i, img in enumerate(images):
            im = Image.fromarray(img)
            im.save(os.path.join(dirname,f"{i}.jpg"))
    print(f"Output dir: {dirname}")
    pil_img.save(os.path.join(dirname, filename))
    if grid_dict is not None and grid_dict is not False:
        if not os.path.exists(dirname):
            os.makedirs(dirname)
        pil_img_.save(os.path.join(dirname, filename[:-4]+"_2048x.jpg"))

def resize_image_with_mask(img, mask, scale):
    if scale == 1:
        return img, mask, None
    img_blackboard = img.copy() # canvas
    mask_blackboard = np.zeros_like(mask)

    M = cv2.moments(mask)
    cx = int(M["m10"] / M["m00"])
    cy = int(M["m01"] / M["m00"])

    scale_factor = [scale, scale]
    resized_img = cv2.resize(img, None, fx=scale_factor[0], fy=scale_factor[1], interpolation=cv2.INTER_AREA)
    resized_mask = cv2.resize(mask, None, fx=scale_factor[0], fy=scale_factor[1], interpolation=cv2.INTER_AREA)
    new_cx, new_cy = cx * scale_factor[0], cy * scale_factor[1]

    for y in range(resized_mask.shape[0]):
        for x in range(resized_mask.shape[1]):
            if 0 <= cy - (new_cy - y) < img.shape[0] and 0 <= cx - (new_cx - x) < img.shape[1]:
                mask_blackboard[int(cy - (new_cy - y)), int(cx - (new_cx - x))] = resized_mask[y, x]
                img_blackboard[int(cy - (new_cy - y)), int(cx - (new_cx - x))] = resized_img[y, x]
    return img_blackboard, mask_blackboard, (cx, cy)

def flip_image_with_mask(img, mask, flip_code=None):
    if flip_code is None:
        return img, mask, None
    M = cv2.moments(mask)
    if M["m00"] == 0:  
        return img, mask
    cx = int(M["m10"] / M["m00"])
    cy = int(M["m01"] / M["m00"])
    
    h, w = img.shape[:2]
    img_center = (w // 2, h // 2)

    tx = img_center[0] - cx
    ty = img_center[1] - cy

    M_translate = np.float32([[1, 0, tx], [0, 1, ty]])
    img_translated = cv2.warpAffine(img, M_translate, (w, h))
    mask_translated = cv2.warpAffine(mask, M_translate, (w, h))
    flipped_img = cv2.flip(img_translated, flip_code)
    flipped_mask = cv2.flip(mask_translated, flip_code)
    M_translate_back = np.float32([[1, 0, -tx], [0, 1, -ty]])
    flipped_img_back = cv2.warpAffine(flipped_img, M_translate_back, (w, h))
    flipped_mask_back = cv2.warpAffine(flipped_mask, M_translate_back, (w, h))

    return flipped_img_back, flipped_mask_back, (cx, cy)