import streamlit as st from keras.layers import LSTM, Dropout, Bidirectional, Dense,Embedding,Flatten,Maximum,Activation,Conv2D,LayerNormalization,add\ , BatchNormalization, SpatialDropout1D ,Input,Layer,Multiply,Reshape ,Add, GRU,Concatenate,Conv1D,TimeDistributed,ZeroPadding1D,concatenate,MaxPool1D,GlobalMaxPooling1D import keras.backend as K from keras import initializers, regularizers, constraints, activations from keras.initializers import Constant from keras import Model import sys import json import pandas as pd import numpy as np with open('CHAR_TYPES_MAP.json') as json_file: CHAR_TYPES_MAP = json.load(json_file) with open('CHARS_MAP.json') as json_file: CHARS_MAP = json.load(json_file) with open('CHAR_TYPE_FLATTEN.json') as json_file: CHAR_TYPE_FLATTEN = json.load(json_file) class TimestepDropout(Dropout): def __init__(self, rate, **kwargs): super(TimestepDropout, self).__init__(rate, **kwargs) def _get_noise_shape(self, inputs): input_shape = K.shape(inputs) noise_shape = (input_shape[0], input_shape[1], 1) return noise_shape def model_(n_gram = 21): input1 = Input(shape=(21,),dtype='float32',name = 'char_input') input2 = Input(shape=(21,),dtype='float32',name = 'type_input') a = Embedding(180, 32,input_length=21)(input1) a = SpatialDropout1D(0.1)(a) a = TimestepDropout(0.05)(a) char_input = BatchNormalization()(a) a_concat = [] filters = [[1,200],[2,200],[3,200],[4,200],[5,200],[6,200],[7,200],[8,200],[9,150],[10,150],[11,150],[12,100]] for (window_size, filters_size) in filters: convs = Conv1D(filters=filters_size, kernel_size=window_size, strides=1)(char_input) convs = Activation('elu')(convs) convs = TimeDistributed(Dense(5, input_shape=(21, filters_size)))(convs) convs = ZeroPadding1D(padding=(0, window_size-1))(convs) a_concat.append(convs) token_max = Maximum()(a_concat) lstm_char = Bidirectional(LSTM(100 ,return_sequences=True))(char_input) b = Embedding(12, 12, input_length=21)(input2) b = SpatialDropout1D(0.1)(b) type_inputs = TimestepDropout(0.05)(b) x = Concatenate()([lstm_char, type_inputs, char_input, token_max]) x = BatchNormalization()(x) x = Flatten()(x) x = Dense(200, activation='elu')(x) x = Dropout(0.2)(x) out = Dense(1, activation='sigmoid',dtype = 'float32')(x) model = Model(inputs=[input1, input2], outputs=out) return model def create_feature_array(text, n_pad=21): n = len(text) n_pad_2 = int((n_pad - 1)/2) text_pad = [' '] * n_pad_2 + [t for t in text] + [' '] * n_pad_2 x_char, x_type = [], [] for i in range(n_pad_2, n_pad_2 + n): char_list = text_pad[i + 1: i + n_pad_2 + 1] + \ list(reversed(text_pad[i - n_pad_2: i])) + \ [text_pad[i]] char_map = [CHARS_MAP.get(c, 179) for c in char_list] char_type = [CHAR_TYPES_MAP.get(CHAR_TYPE_FLATTEN.get(c, 'o'), 4) for c in char_list] x_char.append(char_map) x_type.append(char_type) x_char = np.array(x_char).astype(float) x_type = np.array(x_type).astype(float) return x_char, x_type def tokenize(text): n_pad = 21 if not text: return [''] if isinstance(text, str) and sys.version_info.major == 2: text = text.decode('utf-8') x_char, x_type = create_feature_array(text, n_pad=n_pad) word_end = [] y_predict = model.predict([x_char, x_type], batch_size = 512) y_predict = (y_predict.ravel() > 0.4).astype(int) word_end = y_predict[1:].tolist() + [1] tokens = [] word = '' for char, w_e in zip(text, word_end): word += char if w_e: tokens.append(word) word = '' return tokens model = model_() model.load_weights("cutto_tf2.h5") text = st.text_area("Enter original text!") words = tokenize(text) st.write('|'.join(words))