Spaces:
Sleeping
Sleeping
File size: 4,107 Bytes
be78402 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
import json
import os
import streamlit as st
from cassandra.auth import PlainTextAuthProvider
from cassandra.cluster import Cluster
from llama_index import ServiceContext
from llama_index import set_global_service_context
from llama_index import VectorStoreIndex, SimpleDirectoryReader, StorageContext
from llama_index.embeddings import GradientEmbedding
from llama_index.llms import GradientBaseModelLLM
from llama_index.vector_stores import CassandraVectorStore
from copy import deepcopy
from tempfile import NamedTemporaryFile
os.environ['GRADIENT_ACCESS_TOKEN'] = "sevG6Rqb0ztaquM4xjr83SBNSYj91cux"
os.environ['GRADIENT_WORKSPACE_ID'] = "4de36c1f-5ee6-41da-8f95-9d2fb1ded33a_workspace"
@st.cache_resource
def create_datastax_connection():
cloud_config= {'secure_connect_bundle': 'secure-connect-temp-db.zip'}
with open("temp_db-token.json") as f:
secrets = json.load(f)
CLIENT_ID = secrets["clientId"]
CLIENT_SECRET = secrets["secret"]
auth_provider = PlainTextAuthProvider(CLIENT_ID, CLIENT_SECRET)
cluster = Cluster(cloud=cloud_config, auth_provider=auth_provider)
astra_session = cluster.connect()
return astra_session
def main():
index_placeholder = None
st.set_page_config(page_title = "NyayMitra", page_icon="π¦")
st.header('NyayMitra')
if "conversation" not in st.session_state:
st.session_state.conversation = None
if "activate_chat" not in st.session_state:
st.session_state.activate_chat = False
if "messages" not in st.session_state:
st.session_state.messages = []
for message in st.session_state.messages:
with st.chat_message(message["role"], avatar = message['avatar']):
st.markdown(message["content"])
session = create_datastax_connection()
os.environ['GRADIENT_ACCESS_TOKEN'] = "sevG6Rqb0ztaquM4xjr83SBNSYj91cux"
os.environ['GRADIENT_WORKSPACE_ID'] = "4de36c1f-5ee6-41da-8f95-9d2fb1ded33a_workspace"
llm = GradientBaseModelLLM(base_model_slug="llama2-7b-chat", max_tokens=400)
embed_model = GradientEmbedding(
gradient_access_token = os.environ["GRADIENT_ACCESS_TOKEN"],
gradient_workspace_id = os.environ["GRADIENT_WORKSPACE_ID"],
gradient_model_slug="bge-large")
service_context = ServiceContext.from_defaults(
llm = llm,
embed_model = embed_model,
chunk_size=256)
set_global_service_context(service_context)
with st.sidebar:
st.subheader('Start your chat here')
if st.button('Process'):
with st.spinner('Processing'):
reader = 'data'
documents = SimpleDirectoryReader(reader).load_data()
index = VectorStoreIndex.from_documents(documents,
service_context=service_context)
query_engine = index.as_query_engine()
if "query_engine" not in st.session_state:
st.session_state.query_engine = query_engine
st.session_state.activate_chat = True
if st.session_state.activate_chat == True:
if prompt := st.chat_input("Ask your question"):
with st.chat_message("user", avatar = 'π¨π»'):
st.markdown(prompt)
st.session_state.messages.append({"role": "user",
"avatar" :'π¨π»',
"content": prompt})
query_index_placeholder = st.session_state.query_engine
pdf_response = query_index_placeholder.query(prompt)
cleaned_response = pdf_response.response
with st.chat_message("assistant", avatar='π€'):
st.markdown(cleaned_response)
st.session_state.messages.append({"role": "assistant",
"avatar" :'π€',
"content": cleaned_response})
else:
st.markdown(
' '
)
if __name__ == '__main__':
main()
|