File size: 5,522 Bytes
be60b2c
 
996139e
be60b2c
 
 
996139e
be60b2c
996139e
 
 
 
 
 
 
 
 
be60b2c
996139e
 
 
 
 
c0e1330
996139e
be60b2c
 
996139e
 
 
be60b2c
 
996139e
 
be60b2c
996139e
 
 
 
 
be60b2c
996139e
 
 
 
 
 
 
 
 
 
 
be60b2c
996139e
 
 
 
be60b2c
996139e
 
 
be60b2c
996139e
 
be60b2c
996139e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
from PIL import Image
import numpy as np
import cv2
import requests
import face_recognition
import os
import streamlit as st

# Set page title and description
st.set_page_config(
    page_title="Aadhaar Based Face Recognition Attendance System",
    page_icon="📷",
    layout="centered",
    initial_sidebar_state="collapsed"
)
st.title("Attendance System Using Face Recognition 📷")
st.markdown("This app recognizes faces in an image, verifies Aadhaar card details, and updates attendance records with the current timestamp.")

# Load images for face recognition
Images = []   # List to store Images
classnames = []  # List to store classnames
aadhar_numbers = []  # List to store Aadhaar numbers

directory = "."  # folder name 
myList = os.listdir(directory)

for cls in myList:
    if os.path.splitext(cls)[1] in [".jpg", ".jpeg"]:
        img_path = os.path.join(directory, cls)
        curImg = cv2.imread(img_path)
        Images.append(curImg)
        classnames.append(os.path.splitext(cls)[0])
        # Assume Aadhaar number is part of the image filename (e.g., "123456_john.jpg")
        aadhar_numbers.append(cls.split('_')[0])

# Function to validate Aadhaar card number
def validate_aadhaar(aadhaar):
    # Implement your Aadhaar card validation logic here
    # For simplicity, let's assume any 6-digit number is a valid Aadhaar card
    return len(aadhaar) == 6 and aadhaar.isdigit()

# Function to update Aadhaar data
def update_data(name, aadhaar_number):
    url = "https://attendanceviaface.000webhostapp.com"
    url1 = "/update.php"
    data = {'name': name, 'aadhaar': aadhaar_number}
    response = requests.post(url + url1, data=data)
    
    if response.status_code == 200:
        st.success("Data updated on: " + url)
    else:
        st.warning("Data not updated")

# Function to display image with overlay
def display_image_with_overlay(image, name):
    # Add overlay to the image (e.g., bounding box and name)
    # ...

    # Apply styling with CSS
    st.markdown('<style>img { animation: pulse 2s infinite; }</style>', unsafe_allow_html=True)
    st.image(image, use_column_width=True, output_format="PNG")

# Take input Aadhaar card details
aadhaar_number = st.text_input("Enter your Last 6-digits Aadhaar Number:")
    
# Take picture using the camera 
img_file_buffer = st.camera_input("Take a picture")

# Load images for face recognition
encodeListknown = [face_recognition.face_encodings(img)[0] for img in Images]

if img_file_buffer is not None:
    # Validate Aadhaar card number
    if validate_aadhaar(aadhaar_number):
        test_image = Image.open(img_file_buffer)
        image = np.asarray(test_image)

        imgS = cv2.resize(image, (0, 0), None, 0.25, 0.25)
        imgS = cv2.cvtColor(imgS, cv2.COLOR_BGR2RGB)
        facesCurFrame = face_recognition.face_locations(imgS)
        encodesCurFrame = face_recognition.face_encodings(imgS, facesCurFrame)

        name = "Unknown"  # Default name for unknown faces
        match_found = False  # Flag to track if a match is found

        # Checking if faces are detected
        if len(encodesCurFrame) > 0:
            for encodeFace, faceLoc in zip(encodesCurFrame, facesCurFrame):
                # Assuming that encodeListknown is defined and populated in your code
                matches = face_recognition.compare_faces(encodeListknown, encodeFace)
                faceDis = face_recognition.face_distance(encodeListknown, encodeFace)
                matchIndex = np.argmin(faceDis)

                if matches[matchIndex]:
                    name = classnames[matchIndex].upper()
                    
                    # Check if Aadhaar number is found in the database
                    if aadhaar_number not in aadhar_numbers:
                        st.error("Face recognized, but Aadhaar number not found in the database.")
                    else:
                        # Update data only if a known face is detected and Aadhaar number is valid
                        update_data(name, aadhaar_number)
                        match_found = True  # Set the flag to True
                    
                else:
                    # Face recognized, but not matched with Aadhaar number
                    st.error("Face recognized, but Aadhaar number does not match.")

                y1, x2, y2, x1 = faceLoc
                y1, x2, y2, x1 = y1 * 4, x2 * 4, y2 * 4, x1 * 4
                cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 2)
                cv2.rectangle(image, (x1, y2 - 35), (x2, y2), (0, 255, 0), cv2.FILLED)
                cv2.putText(image, name, (x1 + 6, y2 - 6), cv2.FONT_HERSHEY_COMPLEX, 1, (255, 255, 255), 2)

            display_image_with_overlay(image, name)

            # Display the name corresponding to the entered Aadhaar number
            if not match_found:
                # Match Aadhaar number with the list
                aadhar_index = aadhar_numbers.index(aadhaar_number) if aadhaar_number in aadhar_numbers else None
                if aadhar_index is not None:
                    st.success(f"Match found: {classnames[aadhar_index]}")
                else:
                    st.warning("Face not detected, and Aadhaar number not found in the database.")
            else:
                st.success(f"Face recognized: {name}")

        else:
            st.warning("No faces detected in the image. Face recognition failed.")

    else:
        st.error("Invalid Aadhaar card number. Please enter a valid 6-digit Aadhaar number.")