Spaces:
Sleeping
Sleeping
File size: 5,522 Bytes
be60b2c 996139e be60b2c 996139e be60b2c 996139e be60b2c 996139e c0e1330 996139e be60b2c 996139e be60b2c 996139e be60b2c 996139e be60b2c 996139e be60b2c 996139e be60b2c 996139e be60b2c 996139e be60b2c 996139e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 |
from PIL import Image
import numpy as np
import cv2
import requests
import face_recognition
import os
import streamlit as st
# Set page title and description
st.set_page_config(
page_title="Aadhaar Based Face Recognition Attendance System",
page_icon="📷",
layout="centered",
initial_sidebar_state="collapsed"
)
st.title("Attendance System Using Face Recognition 📷")
st.markdown("This app recognizes faces in an image, verifies Aadhaar card details, and updates attendance records with the current timestamp.")
# Load images for face recognition
Images = [] # List to store Images
classnames = [] # List to store classnames
aadhar_numbers = [] # List to store Aadhaar numbers
directory = "." # folder name
myList = os.listdir(directory)
for cls in myList:
if os.path.splitext(cls)[1] in [".jpg", ".jpeg"]:
img_path = os.path.join(directory, cls)
curImg = cv2.imread(img_path)
Images.append(curImg)
classnames.append(os.path.splitext(cls)[0])
# Assume Aadhaar number is part of the image filename (e.g., "123456_john.jpg")
aadhar_numbers.append(cls.split('_')[0])
# Function to validate Aadhaar card number
def validate_aadhaar(aadhaar):
# Implement your Aadhaar card validation logic here
# For simplicity, let's assume any 6-digit number is a valid Aadhaar card
return len(aadhaar) == 6 and aadhaar.isdigit()
# Function to update Aadhaar data
def update_data(name, aadhaar_number):
url = "https://attendanceviaface.000webhostapp.com"
url1 = "/update.php"
data = {'name': name, 'aadhaar': aadhaar_number}
response = requests.post(url + url1, data=data)
if response.status_code == 200:
st.success("Data updated on: " + url)
else:
st.warning("Data not updated")
# Function to display image with overlay
def display_image_with_overlay(image, name):
# Add overlay to the image (e.g., bounding box and name)
# ...
# Apply styling with CSS
st.markdown('<style>img { animation: pulse 2s infinite; }</style>', unsafe_allow_html=True)
st.image(image, use_column_width=True, output_format="PNG")
# Take input Aadhaar card details
aadhaar_number = st.text_input("Enter your Last 6-digits Aadhaar Number:")
# Take picture using the camera
img_file_buffer = st.camera_input("Take a picture")
# Load images for face recognition
encodeListknown = [face_recognition.face_encodings(img)[0] for img in Images]
if img_file_buffer is not None:
# Validate Aadhaar card number
if validate_aadhaar(aadhaar_number):
test_image = Image.open(img_file_buffer)
image = np.asarray(test_image)
imgS = cv2.resize(image, (0, 0), None, 0.25, 0.25)
imgS = cv2.cvtColor(imgS, cv2.COLOR_BGR2RGB)
facesCurFrame = face_recognition.face_locations(imgS)
encodesCurFrame = face_recognition.face_encodings(imgS, facesCurFrame)
name = "Unknown" # Default name for unknown faces
match_found = False # Flag to track if a match is found
# Checking if faces are detected
if len(encodesCurFrame) > 0:
for encodeFace, faceLoc in zip(encodesCurFrame, facesCurFrame):
# Assuming that encodeListknown is defined and populated in your code
matches = face_recognition.compare_faces(encodeListknown, encodeFace)
faceDis = face_recognition.face_distance(encodeListknown, encodeFace)
matchIndex = np.argmin(faceDis)
if matches[matchIndex]:
name = classnames[matchIndex].upper()
# Check if Aadhaar number is found in the database
if aadhaar_number not in aadhar_numbers:
st.error("Face recognized, but Aadhaar number not found in the database.")
else:
# Update data only if a known face is detected and Aadhaar number is valid
update_data(name, aadhaar_number)
match_found = True # Set the flag to True
else:
# Face recognized, but not matched with Aadhaar number
st.error("Face recognized, but Aadhaar number does not match.")
y1, x2, y2, x1 = faceLoc
y1, x2, y2, x1 = y1 * 4, x2 * 4, y2 * 4, x1 * 4
cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 2)
cv2.rectangle(image, (x1, y2 - 35), (x2, y2), (0, 255, 0), cv2.FILLED)
cv2.putText(image, name, (x1 + 6, y2 - 6), cv2.FONT_HERSHEY_COMPLEX, 1, (255, 255, 255), 2)
display_image_with_overlay(image, name)
# Display the name corresponding to the entered Aadhaar number
if not match_found:
# Match Aadhaar number with the list
aadhar_index = aadhar_numbers.index(aadhaar_number) if aadhaar_number in aadhar_numbers else None
if aadhar_index is not None:
st.success(f"Match found: {classnames[aadhar_index]}")
else:
st.warning("Face not detected, and Aadhaar number not found in the database.")
else:
st.success(f"Face recognized: {name}")
else:
st.warning("No faces detected in the image. Face recognition failed.")
else:
st.error("Invalid Aadhaar card number. Please enter a valid 6-digit Aadhaar number.") |