File size: 3,495 Bytes
ee45314
5f5fb95
4cb6fe1
32780dd
 
e0bb112
 
 
5f5fb95
32780dd
4cb6fe1
c242c73
 
 
 
 
 
 
f88ac95
c242c73
 
 
 
 
f88ac95
c242c73
 
 
 
 
 
32780dd
4cb6fe1
 
 
 
c242c73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5b98964
c242c73
ee45314
 
 
 
 
 
 
 
c242c73
ee45314
c242c73
 
 
4cb6fe1
32780dd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4cb6fe1
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

import streamlit as st
from PIL import Image
import face_recognition
import cv2
import numpy as np
import requests
import os

st.title("AIMLJan24 - Face Recognition")

# create list of encoding of all images in photos folder
# Load images for face recognition
Images = []   # List to store Images
classnames = []  # List to store classnames
directory = "photos"
myList = os.listdir(directory)

st.write("Photographs found in folder : ")
for cls in myList:
    if os.path.splitext(cls)[1] in [".jpg", ".jpeg"]:
        img_path = os.path.join(directory, cls)
        curImg = cv2.imread(img_path)
        Images.append(curImg)
        st.write(os.path.splitext(cls)[0])
        classnames.append(os.path.splitext(cls)[0])

# Load images for face recognition
encodeListknown = [face_recognition.face_encodings(img)[0] for img in Images]

# camera to take photo of user in question
file_name = st.camera_input("Take a picture")  #st.file_uploader("Upload image  ")

if file_name is not None:
    col1, col2 = st.columns(2)

    test_image = Image.open(file_name)
    image = np.asarray(test_image)

    imgS = cv2.resize(image, (0, 0), None, 0.25, 0.25)
    imgS = cv2.cvtColor(imgS, cv2.COLOR_BGR2RGB)
    facesCurFrame   = face_recognition.face_locations(imgS)
    encodesCurFrame = face_recognition.face_encodings(imgS, facesCurFrame)

    name = "Unknown"  # Default name for unknown faces
    match_found = False  # Flag to track if a match is found

    # Checking if faces are detected
    if len(encodesCurFrame) > 0:
        for encodeFace, faceLoc in zip(encodesCurFrame, facesCurFrame):
            # Assuming that encodeListknown is defined and populated in your code
            matches = face_recognition.compare_faces(encodeListknown, encodeFace)
            faceDis = face_recognition.face_distance(encodeListknown, encodeFace)
            matchIndex = np.argmin(faceDis)

            if matches[matchIndex]:
                name = classnames[matchIndex].upper()
                match_found = True  # Set the flag to True
                
            y1, x2, y2, x1 = faceLoc
            y1, x2, y2, x1 = (y1 * 4), (x2 * 4), (y2 * 4) ,(x1 * 4)
            
            # Make a copy of the image array before drawing on it
            image_copy = image.copy()
            
            cv2.rectangle(image_copy, (x1, y1), (x2, y2), (0, 255, 0), 2)
            cv2.rectangle(image_copy, (x1, y2 - 35), (x2, y2), (0, 255, 0), cv2.FILLED)
            cv2.putText(image_copy, name, (x1 + 6, y2 - 6), cv2.FONT_HERSHEY_COMPLEX, 1, (255, 255, 255), 2)
            
        st.image(image_copy, use_column_width=True, output_format="PNG")
    else:
        st.warning("No faces detected in the image. Face recognition failed.")

    # image = Image.open(file_name)
    # col1.image(image, use_column_width=True)

# pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog")

# st.title("AIMLJan24 First App on Hugging face - Hot Dog? Or Not?")

# file_name = st.file_uploader("Upload the test image to find is this hot dog ! ")

# if file_name is not None:
#     col1, col2 = st.columns(2)

#     image = Image.open(file_name)
#     col1.image(image, use_column_width=True)
#     predictions = pipeline(image)

#     col2.header("Probabilities")
#     for p in predictions:
#         col2.subheader(f"{ p['label'] }: { round(p['score'] * 100, 1)}%")


# # my first app
# import streamlit as st

# x = st.slider('Select a value')
# st.write(x, 'squared is', x * x)