Spaces:
Runtime error
Runtime error
File size: 1,102 Bytes
5f5fb95 e0bb112 4cb6fe1 32780dd e0bb112 5f5fb95 32780dd 4cb6fe1 32780dd 4cb6fe1 32780dd 4cb6fe1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 |
import streamlit as st
# from transformers import pipeline
from PIL import Image
import face_recognition
import cv2
import numpy as np
import requests
import os
st.title("AIMLJan24 - Face Recognition")
file_name = st.camera_input("Take a picture") #st.file_uploader("Upload image ")
if file_name is not None:
col1, col2 = st.columns(2)
image = Image.open(file_name)
col1.image(image, use_column_width=True)
# pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog")
# st.title("AIMLJan24 First App on Hugging face - Hot Dog? Or Not?")
# file_name = st.file_uploader("Upload the test image to find is this hot dog ! ")
# if file_name is not None:
# col1, col2 = st.columns(2)
# image = Image.open(file_name)
# col1.image(image, use_column_width=True)
# predictions = pipeline(image)
# col2.header("Probabilities")
# for p in predictions:
# col2.subheader(f"{ p['label'] }: { round(p['score'] * 100, 1)}%")
# # my first app
# import streamlit as st
# x = st.slider('Select a value')
# st.write(x, 'squared is', x * x) |