from transformers import pipeline from langchain import PromptTemplate, LLMChain, OpenAI import requests import os import streamlit as st HF_API_KEY=st.secrets["HF_API_KEY"] OpenAI_API_Key=st.secrets["OPENAI_API_KEY"] openai_instance = OpenAI(api_key=OpenAI_API_Key) # img2text def img2text(url): image_to_text_model = pipeline("image-to-text", model="Salesforce/blip-image-captioning-large") text = image_to_text_model(url)[0]["generated_text"] print(text) return text # Describe it using LLM def generate_description(caption): template = """ You are a narrator; Write a suitable image description of an image captioned as mentioned in Context. Upto 5 bullet points including few historic facts about the image and how the image can be described to a visually impaired user; CONTEXT: {caption}; """ prompt = PromptTemplate(template=template, input_variables=["caption"]) desc_llm = LLMChain(llm=openai_instance, prompt=prompt, verbose=True) description = desc_llm.predict(caption=caption).replace('"', '') print(description) return description # text to speech def text2speech(message): API_URL = "https://api-inference.huggingface.co/models/espnet/kan-bayashi_ljspeech_vits" headers = {"Authorization": f"Bearer {HF_API_KEY}"} payload = { "inputs": message } response = requests.post(API_URL, headers=headers, json=payload) with open('audio.flac', 'wb') as file: file.write(response.content) def main(): st.set_page_config(page_title="image-to-caption-to-summary", page_icon="😊") st.header("Image to caption to summary") uploaded_file = st.file_uploader("Choose an image", type=['png', 'jpg']) if uploaded_file is not None: print(uploaded_file) bytes_data = uploaded_file.getvalue() with open(uploaded_file.name, "wb") as file: file.write(bytes_data) st.image(uploaded_file, caption="Uploaded Image", use_column_width=True) st.text('Processing img2text...') caption = img2text(uploaded_file.name) with st.expander("caption"): st.write(caption) st.text('Generating description of given image...') description = generate_description(caption) with st.expander("Description"): st.write(description) st.text('Processing text2speech...') text2speech(description) st.audio("audio.flac") if __name__ == '__main__': main()