samim2024 commited on
Commit
bf1c7e8
β€’
1 Parent(s): fe03faf

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +128 -0
app.py ADDED
@@ -0,0 +1,128 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import streamlit as st
3
+ import pickle
4
+ import time
5
+ import langchain
6
+ #from langchain import OpenAI
7
+ #from langchain.chains import RetrievalQAWithSourcesChain
8
+ #from langchain.chains.qa_with_sources.loading import load_qa_with_sources_chain
9
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
10
+ from langchain.document_loaders import UnstructuredURLLoader
11
+ #from langchain.embeddings import OpenAIEmbeddings
12
+ from langchain.vectorstores import FAISS
13
+ import requests
14
+ import pandas as pd
15
+ from langchain_community.llms import HuggingFaceEndpoint
16
+ from sentence_transformers import SentenceTransformer
17
+ from langchain.document_loaders import TextLoader
18
+ from sentence_transformers import SentenceTransformer, util
19
+ from langchain.schema import SystemMessage, HumanMessage, AIMessage
20
+ import faiss
21
+ from dotenv import load_dotenv
22
+ load_dotenv() # take environment variables from .env (especially openai api key)
23
+
24
+ def querypreprocess(query: str ):
25
+ vec = model.encode(query) #again embeddings of query by sentencetransformer and able to search the index vector.
26
+ #svec = np.array(vec).reshape(1,-1) # as 2D needed
27
+ distances, I = index.search(vec, k=2)
28
+ row_indices = I.tolist()[0]
29
+ list1 = [docs[i].page_content for i in row_indices]
30
+ str1 = " "
31
+ str1 = str1.join(list1)
32
+ #str1 = '\n'.join([str(message) for message in list1])
33
+ #results = ' '.join(map(str, list1)) #list to string convert
34
+ return str1
35
+
36
+ def augmented_prompt(query: str):
37
+ messages = querypreprocess(query)
38
+ source_knowledge =''.join([str(message) for message in messages])
39
+ #source_knowledge =results
40
+ augmented_prompt = f"""
41
+ using the contexts below, answer the query.
42
+
43
+ Contexts:
44
+ {source_knowledge}
45
+ Question: {query}
46
+ Answer:"""
47
+ return augmented_prompt
48
+
49
+
50
+ st.title("RockyBot: News Research Tool πŸ“ˆ")
51
+ st.sidebar.title("News Article URLs")
52
+
53
+ urls = []
54
+ for i in range(3):
55
+ url = st.sidebar.text_input(f"URL {i+1}")
56
+ urls.append(url)
57
+
58
+ process_url_clicked = st.sidebar.button("Process URLs")
59
+ file_path = "vector_index.pkl"
60
+
61
+ main_placeholder = st.empty()
62
+ #llm = OpenAI(temperature=0.9, max_tokens=500)
63
+ llm = HuggingFaceEndpoint(repo_id="mistralai/Mistral-7B-Instruct-v0.2")
64
+
65
+ if process_url_clicked:
66
+ # load data
67
+ loader = UnstructuredURLLoader(urls=urls)
68
+ main_placeholder.text("Data Loading...Started...βœ…βœ…βœ…")
69
+ data = loader.load()
70
+ # split data
71
+ text_splitter = RecursiveCharacterTextSplitter(
72
+ separators=['\n\n', '\n', '.', ','],
73
+ chunk_size=1000,
74
+ chunk_overlap=0
75
+ )
76
+ main_placeholder.text("Text Splitter...Started...βœ…βœ…βœ…")
77
+ docs = text_splitter.split_documents(data)
78
+ # Create an array of text to embed
79
+ sentences = []
80
+ for i, row in enumerate(docs):
81
+ sentences.append(row.page_content)
82
+ # create embeddings and save it to FAISS index
83
+ #embeddings = OpenAIEmbeddings()
84
+ #vectorstore_openai = FAISS.from_documents(docs, embeddings)
85
+ # initialize sentence transformer model
86
+ model = SentenceTransformer('bert-base-nli-mean-tokens')
87
+ # create sentence embeddings
88
+ sentence_embeddings = model.encode(sentences)
89
+ main_placeholder.text("Embedding Vector Started Building...βœ…βœ…βœ…")
90
+ time.sleep(2)
91
+
92
+ # Save the FAISS index to a pickle file
93
+ with open(file_path, "wb") as f:
94
+ pickle.dump(vector_index, f)
95
+
96
+ query = main_placeholder.text_input("Question: ")
97
+ if query:
98
+ if os.path.exists(file_path):
99
+ with open(file_path, "rb") as f:
100
+ query = pickle.load(f)
101
+ import faiss
102
+ d = sentence_embeddings.shape[1]
103
+ index = faiss.IndexFlatL2(d) # build the index, d=size of vectors
104
+ # here we assume xb contains a n-by-d numpy matrix of type float32
105
+ index.add(sentence_embeddings) # add vectors to the index
106
+ #chain = RetrievalQAWithSourcesChain.from_llm(llm=llm, retriever=vectorstore.as_retriever())
107
+ #result = chain({"question": query}, return_only_outputs=True)
108
+ # result will be a dictionary of this format --> {"answer": "", "sources": [] }
109
+ #xq = model.encode([query])
110
+ #k=2
111
+ #D, I = index.search(xq, k=k)
112
+ #result1 = [f'{i}: {sentences[i]}' for i in I[0]]
113
+ messages = [
114
+ SystemMessage(content="You are a helpful assistant."),
115
+ HumanMessage(content=query),
116
+ AIMessage(content="I am Great, Thank You, How Can I Help You.")
117
+ ]
118
+ prompt = augmented_prompt(query)
119
+ messages.append(prompt)
120
+ result = llm.invoke(messages)
121
+ st.header("Answer")
122
+ # Display sources, if available
123
+ sources = result.get("sources", "")
124
+ if sources:
125
+ st.subheader("Sources:")
126
+ sources_list = sources.split("\n") # Split the sources by newline
127
+ for source in sources_list:
128
+ st.write(source)