import gradio as gr from fastai.vision.all import * import skimage learn = load_learner('model.pkl') labels = learn.dls.vocab def predict(img): img = PILImage.create(img) pred, pred_idx, probs = learn.predict(img) return {labels[i] : float(probs[i]) for i in range(len(labels))} # Create the gradio interface with title, description, default interpretation, and examples (car.jpg and scooter.png) that shows only the top 1 prediction gr.Interface(fn=predict, title="Car or Scooter", description="Upload an image of a car or scooter and we'll tell you which one it is.", inputs=gr.inputs.Image(shape=(192, 192)), outputs=gr.outputs.Label(num_top_classes=1), interpretation="default", examples=[["car.jpg"], ["scooter.png"]], share=True ).launch()