Update app.py
Browse files
app.py
CHANGED
@@ -1,63 +1,39 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
|
4 |
-
""
|
5 |
-
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
6 |
-
"""
|
7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
history: list[tuple[str, str]],
|
13 |
-
system_message,
|
14 |
-
max_tokens,
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
-
|
20 |
-
for val in history:
|
21 |
-
if val[0]:
|
22 |
-
messages.append({"role": "user", "content": val[0]})
|
23 |
-
if val[1]:
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
-
|
26 |
-
messages.append({"role": "user", "content": message})
|
27 |
-
|
28 |
-
response = ""
|
29 |
-
|
30 |
-
for message in client.chat_completion(
|
31 |
-
messages,
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
-
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
-
|
42 |
-
"""
|
43 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
44 |
-
"""
|
45 |
-
demo = gr.ChatInterface(
|
46 |
-
respond,
|
47 |
-
additional_inputs=[
|
48 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
49 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
50 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
51 |
-
gr.Slider(
|
52 |
-
minimum=0.1,
|
53 |
-
maximum=1.0,
|
54 |
-
value=0.95,
|
55 |
-
step=0.05,
|
56 |
-
label="Top-p (nucleus sampling)",
|
57 |
-
),
|
58 |
-
],
|
59 |
)
|
60 |
|
61 |
-
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from openai import OpenAI
|
2 |
import gradio as gr
|
3 |
+
import os
|
4 |
|
5 |
+
api_key = os.getenv("TYPHOON_API_KEY") # Replace with your key
|
|
|
|
|
|
|
6 |
|
7 |
+
client = OpenAI(
|
8 |
+
base_url='https://api.opentyphoon.ai/v1',
|
9 |
+
api_key=api_key,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
)
|
11 |
|
12 |
+
def predict(message, history):
|
13 |
+
|
14 |
+
system_prompt = """You are HoraGuide, an empathetic Thai girl assistant skilled in psychotherapy and Tarot reading.
|
15 |
+
You provide insights and support using Tarot cards, offering clarity and healing. You always answer in Thai."""
|
16 |
+
|
17 |
+
history_openai_format = [{"role": "system", "content": system_prompt}]
|
18 |
+
for human, assistant in history:
|
19 |
+
history_openai_format.append({"role": "user", "content": human })
|
20 |
+
history_openai_format.append({"role": "assistant", "content":assistant})
|
21 |
+
history_openai_format.append({"role": "user", "content": message})
|
22 |
+
|
23 |
+
response = client.chat.completions.create(
|
24 |
+
model='typhoon-v1.5-instruct',
|
25 |
+
messages= history_openai_format,
|
26 |
+
temperature=0.5,
|
27 |
+
stream=True
|
28 |
+
)
|
29 |
+
|
30 |
+
partial_message = ""
|
31 |
+
for chunk in response:
|
32 |
+
if chunk.choices[0].delta.content is not None:
|
33 |
+
partial_message = partial_message + chunk.choices[0].delta.content
|
34 |
+
yield partial_message
|
35 |
+
|
36 |
+
with gr.Blocks() as demo:
|
37 |
+
gr.ChatInterface(predict)
|
38 |
+
|
39 |
+
demo.launch()
|