import gradio as gr from fastai.vision.all import * import skimage learn = load_learner('better_cat.pkl') labels = learn.dls.vocab def predict(img): img = PILImage.create(img) pred,pred_idx,probs = learn.predict(img) return {labels[i]: float(probs[i]) for i in range(len(labels))} title = "Know your cat" description = "Cat Breed detection is hard. Use pic with cat only" examples = ['cat.png', 'Lasse Cat.png', 'Pumpkin.png'] interpretation='default' enable_queue=True gr.Interface(fn=predict,inputs=gr.inputs.Image(shape=(512, 512)),outputs=gr.outputs.Label(num_top_classes=3),title=title,description=description,examples=examples,interpretation=interpretation).launch()