Spaces:
Sleeping
Sleeping
sabari
commited on
Commit
•
51de811
1
Parent(s):
8c3cc44
Add application file
Browse files
app.py
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""
|
3 |
+
Created on Tue Sep 17 19:03:17 2024
|
4 |
+
|
5 |
+
@author: SABARI
|
6 |
+
"""
|
7 |
+
import os
|
8 |
+
import torch
|
9 |
+
from transformers import AutoConfig
|
10 |
+
from transformers.models.roberta.modeling_roberta import RobertaForTokenClassification
|
11 |
+
from datasets import Dataset
|
12 |
+
from torch.utils.data import DataLoader
|
13 |
+
from transformers import AutoTokenizer
|
14 |
+
import spacy
|
15 |
+
from spacy.tokens import Doc, Span
|
16 |
+
from spacy import displacy
|
17 |
+
|
18 |
+
# Set device
|
19 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
20 |
+
|
21 |
+
class JapaneseNER():
|
22 |
+
def __init__(self, model_path, model_name="xlm-roberta-base"):
|
23 |
+
self._index_to_tag = {0: 'O',
|
24 |
+
1: 'PER',
|
25 |
+
2: 'ORG',
|
26 |
+
3: 'ORG-P',
|
27 |
+
4: 'ORG-O',
|
28 |
+
5: 'LOC',
|
29 |
+
6: 'INS',
|
30 |
+
7: 'PRD',
|
31 |
+
8: 'EVT'}
|
32 |
+
|
33 |
+
self._tag_to_index = {v: k for k, v in self._index_to_tag.items()}
|
34 |
+
self._tag_feature_num_classes = len(self._index_to_tag)
|
35 |
+
self._model_name = model_name
|
36 |
+
self._model_path = model_path
|
37 |
+
|
38 |
+
xlmr_config = AutoConfig.from_pretrained(
|
39 |
+
self._model_name,
|
40 |
+
num_labels=self._tag_feature_num_classes,
|
41 |
+
id2label=self._index_to_tag,
|
42 |
+
label2id=self._tag_to_index
|
43 |
+
)
|
44 |
+
|
45 |
+
self.tokenizer = AutoTokenizer.from_pretrained(self._model_name)
|
46 |
+
self.model = (RobertaForTokenClassification
|
47 |
+
.from_pretrained(self._model_path, config=xlmr_config)
|
48 |
+
.to(device))
|
49 |
+
def prepare(self):
|
50 |
+
# create dataset for prediction
|
51 |
+
sample_encoding = self.tokenizer([
|
52 |
+
"鈴木は4月の陽気の良い日に、鈴をつけて熊本県の阿蘇山に登った",
|
53 |
+
"中国では、中国共産党による一党統治が続く",
|
54 |
+
], truncation=True, max_length=512)
|
55 |
+
|
56 |
+
sample_encoding = {k: v.to(device) for k, v in sample_encoding.items()}
|
57 |
+
|
58 |
+
# Perform prediction
|
59 |
+
with torch.no_grad():
|
60 |
+
output = self.model(**sample_encoding)
|
61 |
+
|
62 |
+
predicted_label_id = torch.argmax(output.logits, axis=-1).cpu().numpy()[0]
|
63 |
+
print("predictedl label",predicted_label_id)
|
64 |
+
|
65 |
+
def predict(self, text):
|
66 |
+
encoding = self.tokenizer([text], truncation=True, max_length=512, return_tensors="pt")
|
67 |
+
encoding = {k: v.to(device) for k, v in encoding.items()}
|
68 |
+
|
69 |
+
# Perform prediction
|
70 |
+
with torch.no_grad():
|
71 |
+
output = self.model(**encoding)
|
72 |
+
|
73 |
+
# Get the predicted label ids
|
74 |
+
predicted_label_id = torch.argmax(output.logits, axis=-1).cpu().numpy()[0]
|
75 |
+
tokens = self.tokenizer.tokenize(self.tokenizer.decode(encoding["input_ids"][0]))
|
76 |
+
|
77 |
+
# Map the predicted labels to their corresponding tag
|
78 |
+
predictions = [self._index_to_tag[label_id] for label_id in predicted_label_id]
|
79 |
+
|
80 |
+
return tokens, predictions
|
81 |
+
|
82 |
+
# Instantiate the NER model
|
83 |
+
model_path = "path_to_your_saved_model"
|
84 |
+
ner_model = JapaneseNER(model_path)
|
85 |
+
ner_model.prepare()
|
86 |
+
# Function to integrate with spaCy displacy for visualization
|
87 |
+
def ner_inference(text):
|
88 |
+
# Get tokens and predictions
|
89 |
+
tokens, predictions = ner_model.predict(text)
|
90 |
+
|
91 |
+
# Create a spaCy document to visualize with displacy
|
92 |
+
nlp = spacy.blank("ja") # Initialize a blank Japanese model in spaCy
|
93 |
+
doc = Doc(nlp.vocab, words=tokens) # Create a spaCy Doc object with tokens
|
94 |
+
|
95 |
+
# Create entity spans from predictions and add them to the Doc object
|
96 |
+
ents = []
|
97 |
+
for i, label in enumerate(predictions):
|
98 |
+
if label != 'O': # Skip non-entity tokens
|
99 |
+
span = Span(doc, i, i+1, label=label) # Create Span for the token
|
100 |
+
ents.append(span)
|
101 |
+
doc.ents = ents # Set the entities in the Doc
|
102 |
+
|
103 |
+
# Render using spacy displacy
|
104 |
+
html = displacy.render(doc, style="ent", jupyter=False) # Generate HTML for entities
|
105 |
+
return html
|
106 |
+
|
107 |
+
# Create Gradio interface
|
108 |
+
import gradio as gr
|
109 |
+
|
110 |
+
iface = gr.Interface(
|
111 |
+
fn=ner_inference, # The function to call for prediction
|
112 |
+
inputs=gr.Textbox(lines=5, placeholder="Enter Japanese text for NER..."), # Input widget
|
113 |
+
outputs="html", # Output will be in HTML format using displacy
|
114 |
+
title="Japanese Named Entity Recognition (NER)",
|
115 |
+
description="Enter Japanese text and see the named entities highlighted in the output."
|
116 |
+
)
|
117 |
+
|
118 |
+
# Launch the interface
|
119 |
+
iface.launch()
|