from rag_app.loading_data.load_urls_recurisvely import load_docs_from_urls from rag_app.knowledge_base.create_embedding import create_embeddings from rag_app.utils.generate_summary import generate_description, generate_keywords from rag_app.knowledge_base.build_vector_store import build_vector_store from rag_app.loading_data.scrap_website import scrap_website from rag_app.loading_data.load_S3_vector_stores import get_chroma_vs, get_faiss_vs # 1. load the urls # 2. build the vectorstore -> the function will create the chunking and embeddings # 3. initialize the db retriever # 4. # docs = load_docs_from_urls(["https://www.wuerttembergische.de/"],6) # # for doc in docs: # # keywords=generate_keywords(doc) # # description=generate_description(doc) # # doc.metadata['keywords']=keywords # # doc.metadata['description']=description # # print(doc.metadata) # build_vector_store(docs, './vectorstore/faiss-insurance-agent-1500','sentence-transformers/multi-qa-mpnet-base-dot-v1',True,1500,150) # print(create_embeddings(docs)) #print(scrap_website(target_url='https://www.wuerttembergische.de/',depth=1)) get_faiss_vs() #get_chroma_vs()